search icon-carat-right cmu-wordmark

Fundamentals of Statistics Applied to Cybersecurity

Through the fundamentals of statistics related to cybersecurity, aspiring data scientists can:

  • Gain knowledge of common problems that a data scientist encounters
  • Become fluent in statistics with the help of a scripting language
  • Increase predictive power and reduce risk within a model
  • Better estimate parameters for a dataset
  • Investigate and solve problems in the cybersecurity realm

Please note that successful completion of this course is a required component of the CERT Applied Data Science for Cybersecurity Professional Certificate. To learn more about the Professional Certificate and discounted package pricing, please go to: SEI Certificates.

Audience

  • Those with a particular interest in data science and cybersecurity, but limited experience with both concepts.

Objectives

After successful completion of this course, you will:

  • be able to perform appropriate hypothesis tests for corresponding data and recognize different distributions of data
  • be able to recognize relevant learning methods for a certain dataset
  • have an appreciation for probability being at the forefront of statistics, model selection, and data science as a whole
  • explain why bias and variance are so critical to assessing model performance
  • explain the differences between types of learning methods and regularization techniques
  • explain the concept of risk within estimation
  • complete tasks involving model selection
  • complete tasks involving finding optimal parameters for a model, distribution, or set of data

Topics

In this course, students will learn about and investigate statistical techniques relied upon in the cybersecurity realm. These include:

  • fundamentals of probability, including:
    • basic properties of probability
    • common distributions of data
    • visualizing data
    • maximum likelihood estimation
    • hypothesis testing
    • parametric and nonparametric tests
    • supervised and unsupervised learning methods
    • the bias-variance tradeoff
    • training and validating a model
    • regularization techniques for creating more generalizable models.

These concepts will be exercised in labs involving density and maximum likelihood estimation, hypothesis testing with z-tests, linear regression, and logistic regression.

Materials

This course is presented in the form of video instruction presented by experts from the SEI CERT Division. Downloadable materials include course presentation slides, instructions for lab exercises, jupyter license, and instructions for using a jupyter notebook. Learners will also be able to access additional resources related to the subject matter.

Prerequisites

Learners should have fundamental knowledge of descriptive statistics and a working knowledge of a programming language (preferably Python or R). A working knowledge of calculus and linear algebra is helpful.

To access the SEI Learning Portal, your computer must have the following:

  • For optimum viewing, we recommend using the following browsers: Microsoft Edge, Mozilla Firefox, Google Chrome, Safari
  • These browsers are supported on the following operating systems: Microsoft Windows 8 (or higher), OSX (Last two major releases), Most Linux Distributions
  • Mobile Operating Systems: iOS 9, Android 6.0
  • Microsoft Edge, Firefox, Chrome and Safari follow a continuous release policy that makes difficult to fix a minimum version. For this reason, following the market recommendation we will support the last 2 major version of each of these browsers. Please note that as of January 2018, we do not support Safari on Windows.

This is an eLearning course.

Register Now

Course Fees [USD]

  • eLearning: $500.00

Schedule

The course contains approximately 3 hours of instructor lecture and 2.5 hours of lab exercises related to the material presented within the course and demonstration/instruction for installing and using tools from SEI experts, supplemented by guided exercises and expert solutions.

Learners can proceed through the course at their convenience and can review and repeat course sessions as often as needed. Learners will have one year to complete the course. Upon completing all course elements, the learner is awarded an electronic certificate of course completion.

Course Questions?

Email: course-info@sei.cmu.edu
Phone: 412-268-7388

Related Courses

  • Advanced Analytics: Digital Forensics

    ONLINE

    After learning about digital forensics related to cybersecurity, aspiring data scientists can: Gain a fundamental understanding of forensic based data science problems Become fluent in natural language processing techniques for insider threat analysis with the help of a scripting language Better understand the procedure for a digital...

    Learn More
  • Advanced Analytics: Malware

    ONLINE

    After learning about malware related to cybersecurity, aspiring data scientists can: Gain knowledge of common problems that a data scientist encounters Become fluent in malware with the help of a scripting language Understand principles of investigating and analyzing properties of malware captured at run time Understand how to detect several...

    Learn More
  • Advanced Analytics: Netflow

    ONLINE

    After learning about NetFlow related to cybersecurity, aspiring data scientists can: Gain knowledge of common problems that a data scientist encounters Become fluent in NetFlow with the help of a scripting language Understand NetFlow architecture Identify types of attacks with network flow data Gain experience with different types of...

    Learn More
  • CERT Applied Data Science for Cybersecurity Certificate Examination

    - Day Course

    This examination provides an objective validation of conceptual knowledge and practical understanding of data analysis for cybersecurity from netflow, malware, and digital forensics activity, as presented in the required courses. The examination consists of 60 multiple choice questions. Students proceed through the examination at their convenience...

    Learn More
  • CERT Applied Data Science for Cybersecurity Certificate Package

    ONLINE

    Students who wish to purchase the certificate program package (four eLearning courses, certificate exam) will receive a discount from the total cost. CERT Applied Data Science for Cybersecurity Certificate Package consists of the following courses: Fundamentals of Statistics Applied to Cybersecurity Advanced Analytics: Netflow Advanced...

    Learn More

Training courses provided by the SEI are not academic courses for academic credit toward a degree. Any certificates provided are evidence of the completion of the courses and are not official academic credentials. For more information about SEI training courses, see Registration Terms and Conditions and Confidentiality of Course Records.