Carnegie Mellon University
Software Engineering Institute

SEl Report

How Design Systems Lead to
Accessible and Secure
Applications

June 30, 2024
Barbora Batokova
Jason Shimkoski
Daniel Tompkins
Yuliia Sergeeva
Marlon Mejia
Brandon Jabout

Christopher Baum

DOI: 10.1184/R1/XXXXXXX
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.sei.cmu.edu

Template: 11-21-2025

https://www.sei.cmu.edu/

Copyright 2026 Carnegie Mellon University.

This Material was originally submitted as part of 2024 IEEE Secure Development Confer-
ence Poster Session.

This material is based upon work funded and supported by the Department of War un-
der Air Force Contract Nos. FA8702-15-D-0002, and FA870225DB003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.

The opinions, findings, conclusions, and/or recommendations contained in this mate-
rial are those of the author(s) and should not be construed as an official US Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute nor of Carnegie Mellon University - Software Engineering Institute
by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and dis-
tribution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Inter-
national License. Requests for permission for non-licensed uses should be directed to
the Software Engineering Institute at permission@sei.cmu.edu.

DM26-0082

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

mailto:permission@sei.cmu.edu

Table of Contents

Y 2 - T o
B 11011 Yo L1 T Y o N
2 Managing dependenCiesccuuieeerienreeneiniineineineinersesse sttt saesaesaesaessaeses
3 Implementing WCAG COMPIIANCEuceuiruirruinreintiitinecseenecsscsecsecsscescssessssesssesssessens
4 Implementing Secure Code PractiCes........cuvrrvrrirrerserscnscnncnnscnncnseesscsecsecesesseseseees
5 Incorporating Collaborative Feedback LOOP........cccceeveirrruirinirerensseisssnsnssnssesnssesssssssssnns
6 Leveraging HCD to Enhance TruStWOrthinessccccceeveriieinnneninsninisincsenssssesssnssssnnnns
References/Bibliography.........ciiiiiiiniiiiiiiniiiiiieineinnissnesesessssssssssssssssssssssssssassssassssssss

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Abstract

Abstract— With the increasing complexity of digital products, it has become more
challenging to create secure and accessible applications while also delivering a
consistent user experience across platforms and brand touchpoints, all at scale and
acceptable speed. Design systems provide a solution to manage this complexity by
defining a set of reusable components and practices that serve as the single source
of truth for design and development. By design and definition, design systems also
play a crucial role in ensuring the accessibility and security of applications. They
achieve this by (1) minimizing the number of dependencies and thus providing
maximum control over the application; (2) offering standardized components
optimized for accessibility; (3) implementing secure coding practices to create
robust components and reduce vulnerabilities; (4) incorporating a collaborative
feedback loop, and (5) leveraging human-centered design (HCD) to enhance system
trustworthiness. Using our proprietary SEI Design System (SDS) as an example, we

discuss these aspects.

Keywords— accessibility, components, dependency management, design patterns,
design systems, feedback loop, human-centered design, secure coding practices,

user interfaces

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1 Introduction

With the increasing complexity of digital products, it has become more challenging
to create secure and accessible applications while also delivering a consistent user
experience across platforms and brand touchpoints, all at scale and acceptable
speed. Bespoke design patterns and development methods have led to lack of
consistency, variable quality, increased technical debt, and security risks like
vulnerabilities and compliance issues. Design systems provide a solution to manage
this complexity by defining a set of reusable components and practices that serve as
the single source of truth for design and development. By design and definition,
design systems also play a crucial role in ensuring the accessibility and security of

applications through multiple aspects.

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 Managing dependencies

Dependency management involves handling external libraries, frameworks, and
modules that software projects rely on, ensuring they are controlled, secure, and
integrated. More external dependencies increase the risk of version conflicts,
security vulnerabilities, build complexities, and performance issues. By proactively
managing dependencies, teams can maintain a stable, secure, and maintainable
project. However, reducing the number of external dependencies or using

dependencies you fully manage is even more advantageous.

When building custom applications for the SEI, a proprietary design system like the
SDS acts as a dependency that we have full control over and deep knowledge of,
because we build it ourselves. It undergoes regular scans to detect vulnerabilities
and malicious packages, and all dependencies are fetched from a locally-hosted
mirror, where each component is scanned and cached before being used, thus
enhancing security. By using only essential dependencies for each application, the
potential attack surface is reduced. Regular checks with tools like npm

outdated ensure dependencies are kept up to date, minimizing security risks from

outdated versions.

Centralizing dependencies through a proprietary design system simplifies
downstream maintenance, as updates are managed more efficiently across the
entire project. This approach not only secures software integrity, but also optimizes

maintenance efforts, ensuring reliability over time.

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 Implementing WCAG Compliance

Design systems that are compliant with Web Content Accessibility Guidelines
(WCAG) provide dependent projects with optimized accessibility, which also
contributes to system security. [1] One of the most established WCAG guidelines
centers around ensuring an interface is perceivable, or presented, in a way that
users can recognize and understand. As an example, colors, which are crucial for
creating accessible experiences, are core elements of any design system. For the
SDS, we developed tonal ranges that meet various WCAG contrast ratios, and thus
established a robust color palette that can be used to create multiple combinations

that meet either Level AA or AAA accessibility, depending on the project need.

Design systems can also set the foundation for users to successfully operate and
understand digital experiences. Consider a simple form consisting of multiple
inputs. Our SDS Form Group component provides structure and labeling for form
fields and also defines navigational patterns for keyboard accessibility, so a user can
quickly move through the form with their keyboard. It also implements helper text
and validation messages, both of which help the user to prevent or recover from

mistakes and successfully fill out the form.

WCAG-compliant design systems not only form the foundation for designing
accessible and distinguishable interfaces in dependent projects, they also present

significant savings in both development and design time.

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 Implementing Secure Code Practices

One of the biggest advantages of design systems is that they provide a common API,
which defines a standardized set of interfaces, methods, and conventions that
determine how components within the design system interact and can be used by
developers. For example, with our SDS 3.0 release, we standardized shared props
(and their attributes) such as size, kind, type, and variant across 15 components,
significantly increasing consistency, efficiency, and maintainability across all

projects that use the SDS.

Design systems also incorporate HTML and JavaScript best practices to prevent
vulnerabilities. For example, SDS components can prevent prototype pollution, a
JavaScript vulnerability where attackers can inject properties into existing
JavaScript prototypes, which can be inherited into other components in the
software, by utilizing the Vue framework to handle the security for us. SDS
components also protect against Cross Site Scripting (XXS) attacks by utilizing
"textContent" over "innerHTML" for input, resulting in the text being read as plain
text and not HTML. As another example, the SDS Link component prevents the
target blank vulnerability where a malicious website can change the
window.opener.location to a phishing page by automatically adding on "noopener

noreferrer' tags for an external link, which stops this attack.

Design systems are also built and deployed using static code analysis to detect
potential regressions, deprecations, syntax errors, and security issues in the code.
Static code analysis, which includes writing unit tests and using linting software,

ensures that the components maintain high quality through rigorous testing.

Finally, many components in mature design systems like the SDS are written in
Typescript, a framework designed to make explicit object types in code. This
improves the developer experience by helping to prevent type errors when writing

code and thus preventing buggy and unreliable code.

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5 Incorporating Collaborative Feedback Loop

A design system thrives on collaborative feedback between end users, product
teams, and maintainers. Tightening this feedback loop results in tailored design
solutions that directly support the needs of product teams, maximizing readability
and usability, minimizing implementation errors and bugs, and building with best
practices by default. Driven by the needs of end users and product teams, as well as
the needs of their products, new features and components become inherently more

useful to the critical audience.[2]

Creating a dedicated platform for visual and technical documentation is paramount
to provide a centralized source of truth and encourage a common language and
goal.[3] Detailed, transparent standards for usability and best practices help the
design system meet the expectations of their users, especially when that process

allows opportunities for feedback.

Setting up design+build roadmaps with expected checkpoints is one example of an
intentional practice which can measurably improve usability. For example, on the
SDS, we employ a progressive release for new components: starting in Alpha,
iterating before moving to Beta, then releasing as Ready. This gives priority to
testing and documentation, making it an integral part of building the product and

uncovering issues early through a collaborative process.

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6 Leveraging HCD to Enhance Trustworthiness

Applying human-centered design (HCD) to create design systems ensures they
embody the best user experience practices and are optimized for versatile use cases.
Thoughtful intersection of needs from business, technology, and people combined
with iterative approach to create the components not only makes design systems
intuitive and user-friendly, but also ensures that the interfaces are perceived as safe
and trustworthy. This reduces the chances of human errors by minimizing cognitive

load, making it easier for users to understand and interact with the system correctly.

(4]

Design systems, including the SDS, promote secure behaviors by informing users
about the necessity of certain security measures and offering timely feedback,
alerts, and visual cues (such as icons, badges, and colors) when potentially risky
actions are taken. Thy also help achieve a higher level of error prevention and
recovery, which are basic usability heuristics [5] that contribute to system
trustworthiness, through features like auto-completion, validation checks,
confirmation dialogues, and undo functions. All these attributes enable users to
make more informed decisions and helps prevent mistakes that compromise
security such as misconfiguring settings or inadvertently disclosing sensitive

information.

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

References/Bibliography

(1]

(2]

(3]

(4]

(5]

World Wide Web Consortium (W3C), "Web Content Accessibility Guidelines (WCAG) 2.2," W3C
Recommendation, 05 Oct. 2023. [Online]. Available: https://www.w3.0rg/TR/WCAG22/. [Accessed: 23-Jul-
2024].

“Closing the Feedback Loop Between UX Design, Software Development, Security Engineering, and
Operations | Proceedings of the 20th Annual SIG Conference on Information Technology

Education,” ACM Conferences, 2019. https://dl.acm.org/d0i/10.1145/3349266.3351420 [Accessed: 24-Jul-
2024].

“Guiding to Safety: How Technical Documentation Writers Can Encourage Software Security,” Federal
Trade Commission, May 22, 2019. https://www.ftc.gov/about-ftc/bureaus-offices/bureau-consumer-
rotection/office-technology-research-investigation/guiding-to-safety-how-technical-documentation-

writers-can-encourage-software-security [Accessed: 24-Jul-2024].

N. Sevcenko, T. Appel, M. Ninaus, et al., "Theory-based approach for assessing cognitive load during
time-critical resource-managing human-computer interactions: an eye-tracking study," Journal of
Multimodal User Interfaces, vol. 17, pp. 1-19, 2023. [Online]. Available: https://doi.org/10.1007/s12193-022-
00398-y. [Accessed: 23-Jul-2024].

D. A. Norman, The Design of Everyday Things. Cambridge, MA: MIT Press, 2013.

Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://www.w3.org/TR/WCAG22/
https://dl.acm.org/doi/10.1145/3349266.3351420
https://www.ftc.gov/about-ftc/bureaus-offices/bureau-consumer-
https://www.ftc.gov/about-ftc/bureaus-offices/bureau-consumer-
https://doi.org/10.1007/s12193-022-
https://doi.org/10.1007/s12193-022-

	SEI Report
	June 30, 2024
	Barbora Batokova Jason Shimkoski Daniel Tompkins Yuliia Sergeeva Marlon Mejia Brandon Jabout Christopher Baum

	Abstract
	1 Introduction
	2 Managing dependencies
	3 Implementing WCAG Compliance
	4 Implementing Secure Code Practices
	5 Incorporating Collaborative Feedback Loop
	6 Leveraging HCD to Enhance Trustworthiness
	References/Bibliography

