Accessed 01/21/26 from:
https://web.archive.org/web/20140815145809/http://www.drdobbs.com/security/programminglanguage

-format-string-vulne/197002914

SECURITY &

WF Tweet Share ﬂ-;_"_{- = Permalink

Programming Language Format String Vulnerabilities

Are C/C++ the only languages with security vulnerabilities? What about Perl, PHP, Java,
Python, and Ruby?

Hal is a Vulnerability Research at CERT. He can be contacted at

www. hburch.com.

Robert C. Seacord is Senior Vulnerability Analyst for CERT/CC. He can be
reached at res@cert. org.

Although not as well known as other vulnerability types such as buffer overflows, format string
wvulnerabilities have been known to exist in C and C++ programs since at least 1999, when a
format string vulnerability was found in AnswerBook2 (cwve.mitre.org/cgi-bin/cvename.cgi?
name=CWE-1999-1417). Formatted output became a major focus of the security community in
June 2000, when a format string vulnerability was discovered in the Washington University ftpd
(WU-FTPD) software package (www.kb.cert.org/vuls/id/29823).

But format string vulnerabilities are not limited to programs written in C and C++. Other
languages that include format strings include Perl, PHF, Java, Python, and Ruby. While these
languages are relatively immune from buffer overflows because they maintain dynamic arrays
and strings for programmers, programs written in them may still contain format string
vulnerabilities.

Format string vulnerabilities result from including data from an untrusted source, such as a user,
in 2 format string. Format strings are used by input and output routines to specify a conversion
between a character string and a set of data values. The following example shows how the C
function printf{’) accepts a format string and a set of values:

printf ("%s Pop: %1id\n™,
country, pop);

and produces a string:

United States Pop: 285734134

In the format string, the 26 begins a conversion specification. This is followed by a set of
formatting parameters and the data type. The %ts conversion specifier instructs printf{’) to output
a string value (the value passed as an argument). The %114 conversion specifier instructs
printf{) to output a decimal value (the "d") in an 11-character field. Format strings can be much
more complicated, including flags, precisions, length modifiers, and even variable widths specified
in parameters.

Directly including user input in a format string lets an attacker inject format specifications into the
format string. This is particularly problematic in programming languages that support the
relatively unknown %en specification. This unusual specification causes the number of characters
successfully written so far to be stored in the integer whose address is given as the argument. If
attackers can write data values to memory, they can often leverage that to gain control of the
system. Even if the language does not support %6n, an attacker may cause the format string to
include more specifications than parameters. Depending on what stack protection exists in the
language, an attacker may be able to access private data, avoid logging, or crash the program.
{Writing exploits for a format string vulnerability is beyond the scope of this work. For a more
detailed explanation, see Robert Seacord's Secure Programming in C and C++; Addison-Wesley,
2005.)

https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914
https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914

Accessed 01/21/26 from:
https://web.archive.org/web/20140815145809/http://www.drdobbs.com/security/programminglanguage
-format-string-vulne/197002914

Format string vulnerabilities often result from a pregrammer being unaware that a particular
routine takes a format string. For example, you can write:

snprintf(str, sizeof(str), "Wrong password for email ¥s”, a
email); []
syslog(LOG_WARNING, str); v

Unfortunately, the syslog() routine uses its second parameter as a format string. As a result, if an
attacker inputs an e-mail of "webmastertss%sthstes@example.com”, sysfog() looks for
parameters to interpret the %s conversion specifiers in the format, most likely resulting in the
program crashing. A more advanced attack may use %n to gain control of the system.

Another common source of format string vulnerabilities is when you need to write an error to
more than one location. For simplicity, you may construct the string using snprintf() and then use
one routine to print the message to a log and another routine to output the message to the end
user in some way, such as in a message box. If either routine allows for format strings, you must
be careful to include the format specification in the call:

fprintf(log, "%s™, logmessage); -
instead of neglecting it as in the following call:
fprintf(log, logmessage); —

The first invocation is the correct one, avoiding a format string vulnerability by specifying that a
string (%&s) should be outputted and then providing that string. Because the second is shorter
and may correspond to how you are thinking about the desired behavior, you may write the
statement in this fashion without considering the consequences.

In this article, I explore the potential consequences of format string vulnerabilities in Perl, PHP,
Java, Python, and Ruby programs.

https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914
https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914

Accessed 01/21/26 from:
https://web.archive.org/web/20140815145809/http://www.drdobbs.com/security/programminglanguage
-format-string-vulne/197002914

Are C/C++ the only languages with security vulnerabilities? What about Perl, PHP, Java,
Python, and Ruby?

Perl

The Perl pregramming language is commonly used for web applications, among others. Perl
provides stack checking and other security features that make many types of vulnerabilities that
are comiman to C programs simphy not possible. Moreover, Perl provides a taint mode that marks
data from untrusted sources as tainted. Some operations, such as running system commands,
are not allowed on data marked as tainted. While this prevents compromise, the Perl interpreter’s
behavior in such cases is to exit with an error message. These protections do not, however,
eliminate the possibility or risk of a format string vulnerability in Perl.

In April 2005, Stefan Schmidt reported a problem in postgrey that was a result of a format string
vulnerability (cve.mitre.org/ cgi-bin/cvename.cgi?name=CVE-2005-1127). Postgrey is an anti-
SPAM program that works with Postfix to implement greylisting. Stefan Schmidt was having
problems with postgrey crashing on e-mail frem similar e-mail addresses. Thess e-mail addresses
were of the form foe_bar¥nowhere. com. xy@[622.622.615.615]. The problem with this e-mail
address is that, if a Perl program uses it in a format string, Per interprets the %&n in the format
string and writes the number of characters written thus far to the memory location specified on
the stack. In the case of postgrey, no other value was placed on the stack, causing the crashes.

The Perl interpreter partially protects the stack in sprindy) by using a special item that is marked
as unwritable. The interprater can detect when a Perl program specifies %n but does not pass an
appropriate parameten The result is that the program exits with a message such as "Modification
of a read-only value attempted at foo.pl line 245." This causes the program to crash but does not
allowe the vulnerability to be exploited by attackers to execute arbitrary code by altering the stack.

Another, more serious consequence of format string vulnerabilities in Perl is illustrated by the
following code example. It comes from a paper on Perl format string vulnerabilities by Steve
Christey of MITRE {wwww.securityfocus.comyfarchive/1/418460/20/0/threaded), a draft of which
was written in 2002.

i3 = "A";

printf {("Before: %aWn");
printf ("fARGV[e]", %a);
printf {("after: %a'n"};

If this script is called vuwicode, then fvulceds %n prints:

Before: A
after: @

In fact, users could sat £a to be any nonnegative integer value. The conseguence of this flaw
depends on how 23 is later used. It may not be a vulnerability at all or it may allow attackers to
subwvert the program.

PHP

Format string vulnerabilities in PHP are difficult to directhy exploit. PHP does not support %en. If
the number of specifications exceeds the number of parameters, the script outputs 2 message of
the form:

Warning: sprintf():
oo few arguments in
foo.php on line 4

PHP does not halt executions due to this error message, so the script continues to execute.

Howewver, the string consbructed by the sprind{) call is blank, which may result in blank log

messages or other problems, such as an attacker being able to eliminate @ message via cross-site

scripting. 3

https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914
https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914

Accessed 01/21/26 from:
https://web.archive.org/web/20140815145809/http://www.drdobbs.com/security/programminglanguage

-format-string-vulne/197002914

Are C/C++ the only languages with security vulnerabilities? What about Perl, PHP, Java,
Python, and Ruby?

Java

Support was added for pringF-style format strings in Java 1.5. Java programs that use these
routines may contain format string vulnerabilities. A malformed format string or insufficient
arguments passed to these routines results in an exception being thrown. If the exception is not
properly handled, attackers may be able to leverage the exception into a denial-of-service attack.
If the exception occurs during logging, attackers may be able to prevent their activities from
being logged.

Python

The Python language does not contain a sprinéf{) function but does contain the %% (format)
command. This command has two forms. In the first form, it acts much as sprintff’), taking a
format string and a list of parameters. In the second form, it takes 2 format string and a
dictionary.

Python checks the parameter list to ensure the number of parameters is equal to the number the
format string specifies. In the case of a2 mismatch, Python generates an exception. Consequently,
a format string vulnerability in 2 Python program results in an error message and the Python
program terminating unless an error handler deals with the resulting exception. As a result, a
format string vulnerability in Python may let attackers launch denial-of-zervice attacks or
circumvent logging facilities (if the Python program crashes before logging the attack). Python
does not support %r, so attackers cannot use format string vulnerabilities to alter variable
wvalues.

In a program wsing the second form, a format string vulnerability in a Python program may let
attackers view entries in the dictionary that they would not otherwise be able to view. The impact
of such a vulnerability depends greatly on the type of data stored in the dictionary.

Consider the following Python program:

userdata = {"user” : "jdoe",
“password” @ "secret” }
passwd = raw_input{"Password: ")

if {(passwd !'= userdata["password”]):
print ("Password " + passwd
+ "\" is wrong for user
X{user)s") % userdata
else:
print "welcome!"”

Usually, if someone enters an incorrect password, they get a message like this:

Password "green”
is wrong for user jdoe

If attackers enter a password of % passward)s, the proegram outputs the correct password
instead of the password entered:

Password “secret”
is wrong for user jdoe

By attacking the format string vulnerability, attackers can trick the program into displaying parts
of the dictionary the attacker should not have access to. In this example, the attacker can
discover the password.

In addition to gaining access to private data, a malicious user can cause a KeyError exception by

entering a key without a value. In the previous example, entering a password of %{hemedir)s

viould result in a KeyError exception. Depending on exception handling and how the resulting

string was to be used, this may let attackers launch denial-of-service attacks or circumvent 4
logging facilities.

https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914
https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914

Accessed 01/21/26 from:
https://web.archive.org/web/20140815145809/http://www.drdobbs.com/security/programminglanguage
-format-string-vulne/197002914

Are CIC++ the only languages with security vulnerabilities? What about Perl, PHF, Java,
Python, and Ruby?

Ruby

Similar to Python, format string wulnemabilities in programs written in Ruby can allow an attacker
to terminate the program prematurely. If Ruby encountars a format specification it does not
understand, such as %=z, or if the format string contains more specifications than parameters
passed to sprintf), Ruby terminates the program with an error message such as "in 'sprin: too
few arguments. [ArgumentError)” or "in sprintf: malformed format string - %=
{ArgumentErrar)”. This can let attackers launch denial-of-service attacks or circumvent logging
facilities. Ruby does not support %60, so an attacker cannot use format string vulnerabilities to
alter variable values.

Conclusion

Format string vulnerabilities are a lesser known type of vulnerability that you should be avare of.
Z and C++'s support for %n, combined with its lack of stack protection, makes format string
vulnerabilities in C and C++4+ programs particularly exploftable. However format string
vulnerabilities can exist in programs written in other programming languages such as Perl, PHR
Java, Python, and Ruby. Although the conseguences of such vulnerabilities may not generally be
as high as format string vulnerabilities in C and C++ programs, a resourceful attacker may be
able to leverage the vulnerability to launch a denial-of-service attack, discover privileged
information, alter variable values, or circumwent logging facilities.

another risk of including user data in format strings is that a vulnerability in the format string
parsing code in the language interpreter or a compeonent library may be exploitable. In December
2005, Jack Louis of Dyad Security discovered a vulnerability in Perl's format string parsing routine
{ove.mitre.org/ogi-bin/cvename.cgi?name=CVE-1559-1417). Exploiting this vulnerability required
specifying a length exceeding 2,147,4832,647, which is unlikely under normal conditions. On the
other hand, attackers could easily use a format string vulnerability in Perl programs to specify
such a length. Perl programs are not immune to format string vulnerabilities, but the vulnerability
in the Perl interpreter increases the potential impact when they do occun Louwis's was not the first
discovery of such a vulnerability: In 2000, the PHP interprater was found to contain a format
string vulnerability in its logging facility (cve.mitre.org/cgi-binfcvename.cgi?name= CWE-2000-
09587}, Thus, even when a programming language contains protections for format string
vulnerabilities, there is still risk in including wser input in format strings.

It is important to realize that format string vulnerabilities can have serious security
consequences. Avoiding format string vulnerabilities is two-fold:

» Be aware of which routines accept format strings and never include user data in format
strings passed to those routines.

s If you want to format the string before cutputting it, ahways use the %= specification and
pass the string as an argument.

Acknowledgment

Thanks to Pamela Curtis for reviewing and editing this article.

https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914
https://web.archive.org/web/20140815145809/http:/www.drdobbs.com/security/programminglanguage-format-string-vulne/197002914

