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Abstract

This report describes the design for a new temporal memory safety model for C code and an
implementation to enforce it. The design improves on the CERT Pointer Ownership Model 
with enhancements including the use of large language models to complete a per-program
model; an improved mechanism to prevent use-after-free errors, inspired by Rust’s borrow
checker and object lifetimes; improved function argument handling with a new abstraction of
diligent or producer arguments; handling structs, unions, or arrays that contain pointers; and
correct handling of ambiguity in assignment operations. This report details the research
approach and early stage results of designing this model, its extension to C’s type system, the
tool design methodology, and the design and initial engineering of lightweight specification and
validation tools.
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1 Introduction

Memory-related bugs, such as use-after-free and buffer overflows, are among the most preva-
lent and challenging issues in C and C++ code. These bugs are difficult to detect and fix,
often resulting in significant security vulnerabilities and system instability. Formal methods,
which use rigorous mathematical and logical reasoning, offer a powerful approach to system-
atically identify and eliminate these types of bugs, providing greater confidence in software
reliability and safety. Formal methods are traditionally labor intensive and difficult to scale,
with ongoing research making inroads against those challenges [2, 11, 20, 24, 32, 33, 36, 43].
Lightweight formal methods—our work’s category—balance rigor with usability, focusing
on targeted partial analysis and the verification of systems, often using automated tools and
model checking [47].

This report describes the design of the Enhanced Pointer Ownership Model (EPOM), a new
temporal memory-safety model for C code, together with an approach to automatically check
whether a program satisfies this model. It specifies our research approach and early results of
designing this model, its extension to C’s type system, our tool design methodology, and our
design and initial engineering of lightweight specification and validation tools. Our design im-
proves on the CERT Pointer Ownership Model [41] with enhancements that include use of a
large language model (LLM) to complete a per-program model; an improved mechanism to
prevent use-after-free errors, inspired by Rust’s borrow checker and object lifetimes; improved
function argument handling with a new abstraction of diligent or producer arguments; han-
dling structs, unions, or arrays that contain pointers; and correct handling of ambiguity in
function calls.

The heap is a part of a computer’s memory that is used during a program’s execution for dy-
namic memory allocation and deallocation of memory blocks of varying size and varying life-
times. To avoid heap errors, C and C++ developers must be disciplined in preserving tem-
poral memory safety in the heap. Such discipline requires them to internalize a mental model
of how the platform will manage heap memory as instructed by their code. This model can
be informed by literature, such as CERT Recommendation MEM00-C, which specifies to al-
locate and free memory in the same module, at the same level of abstraction [40]. Technol-
ogy can also provide constrained models, which we will call “formal models,” such as EPOM
and Resource Acquisition Is Initialization (see Section 4). We will refer to the contents of files
that specify the application of a particular formal model to an actual program as a “p-model.”
Many formal models of C memory and pointers exist, along with verifiers for memory safety,
as detailed in Section 4.

EPOM is a way to enforce temporal memory safety. We are designing EPOM with the goal
of being intuitive for C programmers who work with dynamic memory, since that work re-
quires a mental discipline very similar to what EPOM requires. We have developed a concep-
tual model, and our team is now developing a builder and a verifier for it.

EPOM is not designed to verify that every valid C program is temporally memory-safe. Some
programs, even well-defined ones, will violate EPOM to preserve scalability due to the model’s
limitations. This simply means that you cannot use EPOM alone to completely confirm a C
program’s memory safety; you must use an additional mechanism. For example, EPOM does
not handle (1) reference-counted smart pointers, such as C++’s std::shared ptr<>;(2) cyclic
pointers, such as in doubly linked lists; (3) Windows handles; and (4) pointers managed by
some other mechanism, such as a garbage collector.

However, EPOM can provide strong memory guarantees: If all pointers in a program con-
form to EPOM, then the program is temporally memory-safe. The EPOM model is also strong
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enough to capture a wide range of memory vulnerabilities. For example, using the Common
Weakness Enumeration (CWE), EPOM addresses CWE-401: Missing Release of Memory Af-
ter Effective Lifetime or memory leak [25], CWE-415: Double Free [26], CWE-416: Use After
Free (UAF) [27], CWE-476: NULL Pointer Dereference [28], CWE-590: Free of Memory Not
on Heap [29], and some of CWE-908: Use of Uninitialized Resource [30].
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2 Enhanced Pointer Ownership Model (EPOM)

EPOM is designed to help developers avoid, identify, and fix these temporal memory-safety
issues in three stages:

1. Following the EPOM mental model should help developers avoid writing code with cer-
tain kinds of temporal memory-safety bugs.

2. Automated generation of the p-model identifies some errors for code where the developer
forgot to comply with the model.

3. The EPOM verifier identifies all remaining EPOM compliance errors.

The EPOM builder and verifier are designed to assume that every pointer is either “respon-
sible,” “irresponsible,” or “out of scope.” If the p-model’s label of the pointer’s responsibility
does not agree with the pointer’s usage in code, then that constitutes an EPOM violation and
the verifier should catch it. The user should investigate each error. If the user decides that the
pointer is out of scope (i.e., it is managed by some other mechanism), then they should add
this information to the p-model. The EPOM builder and verifier ignore pointers labeled as
out of scope.

We use the term heap object to denote any single data structure whose memory is allocated
with malloc(), calloc(), aligned alloc(), or realloc(). Objects not allocated using one
of these functions are not heap objects even if they live on the heap on some platforms. In
EPOM, C pointers are partitioned into responsible pointers, irresponsible pointers, and out-
of-scope pointers. Each responsible pointer stewards the object it points to; responsible point-
ers are intended to point to something on the heap that must be freed. Irresponsible pointers
have no involvement with allocating or freeing memory, but they may point to anything (in-
cluding on the stack or data segment or into objects), and irresponsible pointers may undergo
pointer arithmetic. EPOM enforces no constraints on out-of-scope pointers. Their memory
safety should be checked by some other mechanism. However, an out-of-scope pointer may not
be assigned the value of a responsible pointer, and a responsible pointer may not be assigned
the value of an out-of-scope pointer.

The terms responsible, irresponsible, and out of scope can be treated like type qualifiers in C
(e.g., const or restrict). They subtype the pointer variables, irrespective of the variables’
values. As with types, these qualifiers apply to a variable throughout its lifetime. For exam-
ple, if p is considered to be a responsible pointer, it remains responsible throughout its life-
time and cannot cease to be responsible. These terms can apply to local pointers, pointers
defined in structs or unions, pointers defined as function arguments, and the return value of
a function if it is a pointer type. They can also apply to static pointers, but EPOM doesn’t
support static pointers yet.

2.1 Responsible Pointers

Responsible pointers are the subset of pointers that shepherd heap memory and ensure that
the memory eventually gets freed. Each chunk of heap memory (i.e., a heap object) may be
accessed directly at most by one GOOD responsible pointer. Responsible pointers never point
inside the stack, inside the data segment of memory, or inside a heap object except to its be-
ginning.

In ISO standard C, the value of a pointer can be in one of three states: INVALID (i.e., unini-
tialized), NULL, or VALID (i.e., pointing to initialized memory) [17]. Like ISO C pointers,
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responsible pointers have states that can change over their lifetimes. The states for responsi-
ble pointers are ZOMBIE (uninitialized or pointing to memory managed by another respon-
sible pointer), NULL, and GOOD (being the sole GOOD responsible pointer to initialized
memory). GOOD pointers in EPOM are a subset of VALID pointers in ISO C, and ZOMBIE
pointers are a superset of INVALID pointers.

It is a violation of EPOM for two GOOD responsible pointers to point to the same heap ob-
ject. Therefore, assigning one responsible pointer to another and passing a responsible pointer
as a function argument are problematic. Both involve copying the address value from one
pointer to another. In EPOM, any assignment expression whose right-hand side indicates a re-
sponsible pointer can have two interpretations: The left-hand side could indicate an irrespon-
sible pointer; see Section 2.2: Irresponsible Pointers for details. Or the left-hand side could
indicate a responsible pointer, in which case the right-hand pointer is no longer considered
GOOD. While it remains responsible, it has delegated ownership of the pointed-to object to
the assigned-to pointer and is now a ZOMBIE. The states of responsible pointers in EPOM
thus employ move semantics [4]. Dereferencing a ZOMBIE pointer violates EPOM, even if the
pointer’s value remains VALID.

Likewise, passing a responsible pointer to a function provides the same ambiguity that as-
signment does. If the function expects an irresponsible pointer as the argument, this is like
assigning a responsible pointer to an irresponsible pointer. If the function expects a responsi-
ble pointer as the argument, then the function argument receives the same state as the orig-
inal pointer, and the original pointer becomes a ZOMBIE: It has delegated ownership of the
pointed-to object to the function argument.

Responsible pointers avoid the aliasing problem [38] by enforcing (at compile time) that for
each object on the heap there is exactly one GOOD responsible pointer that points to it.

2.2 Irresponsible Pointers

Irresponsible pointers are not responsible for cleaning up the memory they point to. Since
they do not participate in memory allocation or deallocation, the main concern with irrespon-
sible pointers is that they must respect temporal memory safety. CERT POM had irresponsi-
ble pointers but used no tracking mechanism akin to lifetimes, so it did not prevent use-after-
free errors. EPOM does.

An irresponsible pointer cannot be assigned the return value of a function that returns a re-
sponsible pointer (such as malloc()). Unlike a responsible pointer, an irresponsible pointer
can be assigned a value resulting from pointer arithmetic or a value created by C’s address-of
operator &.

The only liability for an irresponsible pointer is that it might outlast the object it points to,
which might cause a use-after-free error. Due to the aliasing problem [38], we do not expect
to track the value of every irresponsible pointer. Instead, we track the lifetime of every object
that an irresponsible pointer can reference. This is based on Rust’s borrow checker and life-
times. When we speak of an irresponsible pointer’s lifetime, we refer to the minimum lifetime
of whatever object the pointer references. The pointer may be assigned to a different object,
but that object must still outlast the minimum lifetime. (In fact, every object has a lifetime;
it is only irresponsible pointers whose objects’ lifetimes must be explicitly tracked.)

By default, irresponsible pointers that are function arguments are assumed to outlast the
function call; their lifetimes need not be specified unless their referenced object does not out-
last the function call. The same applies to locally declared irresponsible pointers. Irresponsi-
ble pointers that serve as function return values are different; they must outlast the function
call. Therefore, they must provide an explicit lifetime, which will typically match the lifetime
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of one of the function arguments. Or they could specify the lifetime “STATIC,” meaning that
their object lives until the program terminates.

Irresponsible pointers affect other types that contain them, such as arrays, structs, and
unions. Any composite type that can contain an irresponsible pointer should have a lifetime
specified; this specification can be used to indicate the lifetime of the irresponsible pointers
contained in the composite type.

2.3 Function Pointer Arguments

EPOM improves on POM’s handling of function arguments that are pointers. A pointer
that is passed into a function could be responsible, irresponsible, or out of scope. While the
pointer’s responsibility never changes during the function’s execution, the pointer’s state may
change. Thus, every pointer argument has an initial set of states and a final set of states.
These can be identical but need not be. There are five responsibility classifications of func-
tion arguments of pointer type: out of scope, diligent, irresponsible, responsible, or producer.
The notion of diligent or producer arguments is new to EPOM; they did not exist in POM.

Out-of-Scope Arguments

Out-of-scope arguments are outside our model.

Diligent Arguments

Diligent arguments are pointers that could be irresponsible or responsible. In particular, dur-
ing function execution, they are never assigned to point somewhere else, they are never freed,
and their value never escapes the function. They are never assigned to another pointer with
one exception: The function may return their value as an irresponsible pointer.

Diligent pointer arguments have several constraints: Any pointer may be passed to a func-
tion that expects a diligent pointer argument. The pointer’s start state should be noted, but
not its end state, because its end state will always match its start state. It is permissible to
pass any pointer (responsible, irresponsible, or out of scope) to such a function. For example,
strcpy() takes two diligent pointers and returns its destination string pointer. Passing it any
pointers, as long as they point to VALID memory, complies with EPOM. The return value’s
lifetime matches the first argument’s lifetime (since it is the first argument).

Irresponsible Arguments

An argument whose value is never freed, but might be assigned to point elsewhere or have its
pointer reassigned, should be irresponsible. These pointers’ start states and end states should
be specified in the p-model.

Responsible Arguments

A function that takes a responsible pointer that starts as GOOD but may become ZOMBIE
is said to “consume” the argument. Consequently, a function argument pointer should be de-
clared “responsible” only if the function might consume the argument; that is, it might free
the pointer or assign it to another responsible pointer. For instance, the free() function
converts a responsible pointer (either GOOD or NULL) into a ZOMBIE. As with irrespon-
sible arguments, responsible pointers’ start states and end states should be specified in the
p-model.

A function with one or more responsible pointer arguments may change the arguments’ states
distinctly based on whether it produced an error or not. For example, the realloc() func-
tion takes a responsible pointer as its first argument. If the pointer was NULL, it remains
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NULL. If it was GOOD, and realloc() returns a non-NULL pointer, it becomes a ZOMBIE.
If realloc() returns NULL, the pointer’s state remains unchanged. So this argument pointer
is similar to free()’s argument pointer, but only when realloc() succeeds. But realloc()
also returns a responsible pointer, which is either GOOD or NULL like malloc().

Producer Arguments

A “function producer argument” is a pointer-to-pointer argument with special properties.
The outer pointer (i.e., the argument in the function invocation) must be constant; that is,
the function may not assign it to point elsewhere. The outer pointer may not be freed or con-
sumed. Finally, any call to the function must provide either a responsible outer pointer or the
address (&) of a pointer.

In these cases, the outer pointer is treated as responsible, except that it may not be consumed
or freed. The inner pointer may be responsible, irresponsible, or out of scope. They are simi-
lar to diligent arguments, but diligent arguments are expected never to be consumed or freed.
Their pointers and pointed-to values are considered “read-only.”

A function producer argument that points to responsible pointers may free or otherwise con-
sume them. Producer arguments are neither responsible nor irresponsible due to the above
constraints. If the outer pointer was responsible, it would be possible to free it, and if the
outer pointer was irresponsible, it would be possible to use it to circumvent the responsible
pointer aliasing. A function with one or more producer arguments may change the arguments’
states based on whether it produced an error or not.

2.4 Types that Contain Pointers

EPOM has a design for types that contain pointers, which POM did not handle. We define
a composite type as any C data type that can contain a pointer. Composite types consist of
pointer types and structs, unions, arrays, and pointers that contain a composite type. We dis-
tinguish these from non-composite types, which include structs, unions, and arrays that do not
contain any pointers. A composite object is an object of a composite type. A responsible com-
posite object is a composite object with at least one responsible pointer, and an irresponsible
composite object is a composite object with at least one irresponsible pointer. Note that a
composite object can be both responsible and irresponsible.

A responsible composite object with exactly one responsible pointer has the same responsible
states as the pointer. That is, if the responsible pointer is GOOD, the composite object’s re-
sponsible state can be inferred as GOOD. A composite object with more than one responsible
pointer will also have a responsible state derived from the responsible pointers’ states. Like-
wise, a composite object with exactly one irresponsible pointer itself can have the same states
as the pointer. That is, if the irresponsible pointer is VALID, the composite object’s irrespon-
sible state can be inferred as VALID. A composite object with more than one irresponsible
pointer will also have an irresponsible state derived from the responsible pointers’ states.

In C, many heap objects are not accessible directly via a pointer defined on the stack but can
be accessed indirectly through two or more pointers. An example is the third element in a
linked list.

We define a C-path as a way to access any object in memory in C. It starts off with a global
or local variable and then consists of a (possibly empty) sequence of array accesses (e.g.,
a[i]), pointer dereferences (e.g., *p), struct membership (e.g., s.a), and union membership
(e.g., u.a). C-paths are a lot like file paths. Composite types are what one uses to build net-
works of heap objects in memory. The pointers must be VALID or GOOD.

A heap object that can’t be referenced by any C-path indicates a memory leak. If no memory
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leaks exist in a program at a point in time, then every heap object has at least one C-path
to reference it. In a memory-safe program with no out-of-scope pointers, at any point dur-
ing program execution, every heap object has exactly one C-path where every pointer in the
path is responsible. We call this “the responsible C-path.” It is an EPOM violation to free
a pointer via a C-path that has at least one irresponsible pointer in it. Note that any vari-
ables before the first pointer live on the stack or global segment, and everything past the first
pointer must live on the heap.

2.5 Control Flow and Responsible Pointer States

A pointer can be in multiple states at once. We always assume that the states a pointer is in
can be determined statically. For any two states, branching can create a pointer that could be
in both states. For example, malloc() returns a responsible pointer that could be GOOD or
NULL.

This can be a source of trouble. In Standard C, there is no way to distinguish GOOD respon-
sible pointers from uninitialized pointers. This (among other things) requires a developer to
maintain internal discipline to make sure that only VALID pointers are passed to most li-
brary functions. EPOM is designed to keep track of the states of pointers and issue warnings.
For example, the EPOM verifier will warn if a pointer that might be uninitialized or NULL is
dereferenced.
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3 Implementation

Each p-model is stored in a YAML file. Figure 3.1 shows an example of C source code, and
Figure 3.2 shows its associated p-model. See Appendix A for our YAML schema for p-models.
We will also build a verifier to confirm that a p-model correctly models the responsibility
of all pointers in the code. To verify a p-model and source code, you must first use Clang
on the source code to generate an Abstract Syntax Tree (AST), then serialize the AST to
a JavaScript Object Notation (JSON) file. EPOM verification by design works only on pro-
grams that can be compiled with Clang. This design enables the AST to be inspected without
having to integrate our code with Clang. Appendix B provides the details of our planned im-
plementation and includes a high-level flow diagram of verifying a p-model in Fig. B.1.

Once the AST is serialized in JSON format, the verifier can ingest the AST to track and build
an internal pointer model of the pointers in the program. A simple dictionary is used to map
functions found in the AST to the function’s internal control flow, argument pointers, local
variable pointers, and return type pointers. Given the tree structure of the AST JSON, each
function definition will contain all necessary information to build the internal pointer model.
Based on the AST node type, the internal pointer model will digest the AST node accordingly
and update the associated function’s internal control flow if necessary.

After the internal pointer model has been fully created from the digested AST JSON for each
function, the p-model is compared to the end state of the internal pointer model after follow-
ing the internal control flow. First, the p-model checks for the existence of all declared func-
tion argument pointers, local variable pointers, and the return pointer type. If there are any
missing or extraneous pointers, the verifier will warn the user of the discrepancy. Afterward,
the function argument pointers and return pointer type in the p-model are verified for correct-
ness given the internal control flow. Once the function argument pointers and return pointer
type in the p-model are verified, the local variable pointers are verified for correctness given
the internal control flow. Any verification errors are reported back to the user as warnings.

Our p-models are currently built manually, but we will automate that. Automated static anal-
ysis will help but gets complicated. For example, determining the responsibility of a pointer
inside a struct requires inspecting how the struct is used throughout the program. So we will
use an LLM to help complete automated p-model generation (CERT POM instead required
manual completion). We hypothesize that an LLM may be able to correctly ascertain the

3 // ...
4 void usage(char* msg) {
5 fprintf(stderr, msg);
6 free(msg);
7 }
8
9 int main(int argc, char** argv) {
10 char* errmsg;
11 if (argc > 2) {
1 errmsg = malloc(100);
13 if (errmsg != NULL) {
14 snprintf(errmsg, 100, "Need␣more␣than␣%d␣

arguments!", argc);
15 usage(errmsg);
16 free(errmsg);
17 exit(1);
18 }
19 }
20 // ...
21 }

Figure 3.1: Example C Source Code

Functions:
usage:

args:
msg:

resp: responsible
start: [GOOD]
end: [ZOMBIE]

return: []

main:
args:

argv:
type: array
resp: diligent
max: argc
start: [VALID]
referent: diligent

locals:
errmsg:

resp: responsible

Figure 3.2: Example p-model for the
Code in Figure 3.1
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responsibility of some pointers that static analysis alone may not resolve correctly and do it
faster and more accurately (i.e., with a greater percentage of correct labels in the p-model)
than a human could. Manually creating or verifying a p-model is slow and impedes its use; for
example, the specifications used by Frama-C’s library must be proofread by the user [38]. An
EPOM p-model that can be generated automatically does not have this impediment. We also
hypothesize that an LLM may be better at discerning programmer intent than static analy-
sis alone, especially if the code is defective or violates EPOM. A risk of using LLMs is that
they sometimes hallucinate, making wrong statements, often in confident language. However,
since the verifier will assess the accuracy of a p-model, it will emit warnings on any p-model
that the program does not comply with, therefore preventing any hallucinations from produc-
ing a “correct” p-model. We plan to test how successful the LLM will be in filling out the p-
model. Since a p-model can be filled out manually, it is easy to “grade” the LLM, and its per-
formance will be a major component of this research. As we continue to develop EPOM based
on this design and then test it, we want to investigate which LLMs perform best and how to
optimize LLM prompts to output good p-models.
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4 Related Work

Memory violations are among the most prevalent and severe types of vulnerabilities, and
they have been extensively studied by researchers in academia and industry for decades [42].
Memory-safety violations primarily fall into two categories: temporal and spatial. However,
Chen and colleagues have identified other important classes [10, 9, 8], including invalid pointer
value errors (such as null, uninitialized, or manufactured pointers), memory leaks, and seg-
ment confusion errors (such as invalid dereferences and invalid frees). In this work, we focus
on temporal memory safety by tracking pointer ownership and checking compliance with tem-
poral safety constraints.

Several prior formal models have addressed temporal memory safety, with our approach
specifically inspired by three main directions [12, 18, 41]. First, the Pointer Ownership Model
(POM) [41] allows developers to formally specify temporal memory-safety constraints through
a p-model, which can be partially inferred using static analysis and validated automatically.
Our work extends POM by enhancing its memory-safety coverage through explicitly tracking
pointer lifetimes.

Second, our approach is influenced by Rust’s borrow checker, which ensures comprehensive
memory safety, including thread safety and controlled concurrency [18]. Our approach sup-
ports a limited set of Rust features, specifically those similar to Rust’s Box pointers and refer-
ences, but does not cover Rust’s reference-counted pointers. An alternative strategy explored
in the Defense Advanced Research Project (DARPA) Translating All C to Rust (TRAC-
TOR) program [13] involves automatically translating existing C code into Rust to eliminate
memory-safety vulnerabilities. However, such translations may use unsafe Rust code, thereby
undermining the safety guarantees that Rust provides.

Third, our approach aligns conceptually with the Resource Acquisition Is Initialization (RAII)
paradigm from C++ [5, 12]. RAII systematically associates resource lifetimes—such as dy-
namically allocated memory, file handles, and mutex locks—with object lifetimes, encapsu-
lating resource acquisition in constructors and resource release in destructors. Our method
similarly tracks and manages pointer lifetimes statically, which allows us to check for temporal
memory safety.

Other approaches to guarantee memory safety in C include extending the language with
memory-safe pointers [34, 48, 49]. For instance, Checked C [14] extends C by introducing
checked pointers that explicitly specify bounds for objects and arrays, allowing compile-time
verification or run-time checks. Even though some semi-automated approaches have been sug-
gested to transpile C into Checked C code [22], this method still requires rewriting large parts
of the code base into a safe language, which limits its practicality. The MSA tool helps port
C code to Checked C [31], and like our EPOM p-model builder and verifier, it uses compiler-
generated ASTs, static analysis, and LLMs to deal with complexity. MSA also uses symbolic
inference, unlike our system.

Alternatively, C-Rusted [3] incorporates Rust-inspired concepts like ownership and borrow-
ing through standard C macros that vanish after preprocessing, enabling static analysis with-
out altering compiler behavior. Its analyzer detects errors such as NULL pointer dereferences,
memory leaks, and use-after-free, but extensive manual annotations limit scalability for large
legacy codebases.

Another approach is to extend pointer structures to include bounds information, inserting
run-time checks during compilation to ensure memory accesses remain within allocated re-
gions [19, 39]. While effective, this modification introduces significant run-time and memory
overhead [19].
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Other approaches to temporal memory safety build on the low-overhead Capability Hard-
ware Enhanced RISC Instructions (CHERI) architecture [15, 16, 45], which provides spa-
tial memory safety and has ongoing standardization efforts with significant industry involve-
ment [23, 44]. CHERI replaces the use of integer addresses as pointers with capabilities that
carry bounds information, and hardware enforces its capability-authorized memory access. Al-
though the temporal memory enhancements demonstrated efficient execution time overhead,
these approaches are not available on mainstream CPUs (e.g., Intel x86-64 and AMD64) since
CHERI requires capability registers, tagged memory, or hardware-enforced bounds checks for
pointers.

Finally, model checking techniques [6, 7, 21, 35, 37, 46] represent a general approach for ver-
ifying memory properties but face scalability challenges due to their precise modeling of pro-
gram memory. In contrast, our approach, although targeting only a subset of memory-safety
properties, aims to be lightweight, scalable, and efficient.
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5 Conclusion and Future Work

This report describes our research approach to demonstrate that our EPOM formal model
can be useful to prove partial temporal memory safety in C code. We provide highlights and
some details of our design for the EPOM model, C code evaluation, tool design methodology,
validation tool, and testing ideas. We are now developing code for automating p-code cre-
ation and validation as well as an automated testing framework to run experiments. Our de-
sign choice to use an LLM for p-model generation support is intended to lower manual effort
and increase correctness, but it risks hallucinations. We expect that such hallucinations will
cause the verifier to produce warnings about the program not complying with the p-model.
Planned tests will help us understand the impact of that and other design choices. EPOM
is intended to help developers avoid, identify, and fix temporal memory-safety issues with its
mental model, automated p-model generation, and automated verification. If successful at val-
idating temporal safety, EPOM could improve the security and functionality of much of the
huge amount of C code currently in use at a low cost (due to full automation) and with no
performance reduction.

Future work could investigate how out-of-scope pointers interact with responsible and irre-
sponsible pointers in data structures such as doubly-linked lists and reference-counted pointers
and then possibly extend EPOM to include such data structures. Future work could increase
C language coverage in EPOM by (1) supporting the alloca() function, which would require
modifying the C-path definition; (2) supporting static pointers; and (3) supporting tracing
responsible or irresponsible pointers through integer casts or casts to any other non-pointer
types.
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A Appendix A: YAML Schema for p-models

# YAML schema for p-models, compatible with Yamale
# To use this, run: yamale -s pom.yamale.yml <your pom file>
# Or, use the built-in checker command: pom-lint <your pom file>

Functions: map(include('function'), key=str(), min=0, required=True)

---
function:

args: map(include('pom-element'), key=str(), min=0, required=False)
locals: map(include('pom-element'), key=str(), min=0, required=False)
return: include('recursive-pom-element', required=False)

pom-element:
resp: include('responsibility', required=True)
type: include('pointer-type', required=False)
start: include('pointer-state', required=False, min=1)
end: include('pointer-state', required=False, min=1)
destructor: include('destructor', required=False)

# conditional properties
min: any(int(), str(), required=False)
max: any(int(), str(), required=False)
lifetime: any(int(), str(), required=False)

referent: any(include('recursive-pom-element'), include('responsibility'), required=False)

recursive-pom-element:
name: str(required=False)
resp: include('responsibility', required=False)
type: include('pointer-type', required=False)
start: include('pointer-state', required=False, min=1)
end: include('pointer-state', required=False, min=1)
destructor: include('destructor', required=False)

# conditional properties
min: any(int(), str(), required=False)
max: any(int(), str(), required=False)
lifetime: any(int(), str(), required=False)

referent: any(include('recursive-pom-element'), include('responsibility'), required=False)

responsibility: enum('responsible', 'irresponsible', 'out-of-scope', 'diligent', 'producer')
pointer-state: list(enum('VALID', 'INVALID', 'GOOD', 'ZOMBIE', 'NUL'), min=1)
pointer-type: enum('pointer', 'array', 'struct', 'union')
destructor: regex('^(free|fclose|.*)$')

Figure A.1: YAML Schema for p-models, Compatible with Yamale
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B Appendix B: Details of Implementation

To create a p-model from C source, you must run Clang on the source code to generate an
Abstract Syntax Tree (AST) and then serialize the AST to a file in JSON format. Our EPOM
tooling currently works only on programs that can be compiled with Clang. From the AST,
a Python FunctionDigest class can be created to represent each FunctionDecl. Given the
tree structure of the AST JSON, all information about function declaration, parameters, and
control flow is stored within the FunctionDecl object, and therefore within a FunctionDigest

class.

The FunctionDigest contains information about the parameters (stored in a
ParameterDigest), return type (stored in a ReturnDigest), control flow (stored
in a ControlFlowSequence), and pointer ownership model status (stored in a
PointerOwnershipStatus). The PointerOwnershipStatus lists out each parameter pointer
and local variable pointer as well as the associated pointer responsibility and state. Based on
the responsibility, a lifetime of the pointer is also stored within the PointerOwnershipStatus.

To create a FunctionDigest, a pointer state map is initialized. Then, the p-model builder
follows the ControlFlowSequence linearly, making changes to the pointer state map based on
the operations occurring in the control flow. Once it has fully digested the control flow, the
p-model builder converts the pointer state map into a PointerOwnershipStatus object and
stores it within the FunctionDigest. Figure 3.2 shows an example.

Based on the results of the pointer state map, the responsibility and state of some pointers
may not be fully determined. In this case, an LLM is queried. We developed a prompt to
query the LLM with necessary definitions for pointer ownership, the pointer state map, and
the clang AST. The required output is an updated pointer state map with any unresolved re-
sponsibilities and states remedied by the LLM. Additionally, for each change, a reason is re-
quired to presented to the user.

See Figure B.1 for a high-level verification flow.

For verification, the clang AST of the C source that the EPOM is describing is necessary. To
verify the YAML representation of a program’s pointers, the data format must first be vali-
dated. Using the Yamale [1] library, the YAML representation is validated against a schema
for p-model files (see Figure A.1). If validation does not succeed, then verification fails. As-
suming validation is successful, the clang AST is converted into a map of function names
pointing to FunctionDigest. Then, for every function within the AST, the YAML represen-
tation is queried for that function. If that function exists, then the arguments, local variables,
and return type are all validated. If the function does not exist, a warning is returned to the
verifier, but verification will continue.

The first step in verifying function arguments and local variables is the same: The YAML rep-
resentation is queried to ensure that the proper function arguments and local variables are
present. If any function argument or local variable is not present, a warning is displayed.

To verify the return type, the clang AST function definition is queried for its type. If the
YAML representation of the return value of the function is correctly denoted as the same type
as the type within the clang AST (assuming the return value is a pointer), then the initial
verification is successful. Otherwise, a warning is displayed.

Once verification of the existence of function arguments, local variables, and return type are
complete, the ControlFlowSequence within the FunctionDigest is used to verify the respon-
sibility of function arguments, local variables, and return type. While iterating through the
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Figure B.1: High-Level Flow of Verifying a p-model
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ControlFlowSequence, if a control flow item disagrees with the YAML representation of any
function arguments, local variables, or return type, then a warning is displayed.

Currently, we have developed verification of the existence of the correct function arguments,
local variables, and return type.
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Checking Revisited. International Journal on Software Tools for Technology Transfer,
22(2):115–133, 2020.

[8] Zhe Chen, Chuanqi Tao, Zhiyi Zhang, and Zhibin Yang. Beyond Spatial and Temporal
Memory Safety. In Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, pages 189–190. ACM, 2018.

[9] Zhe Chen, Jun Wu, Qi Zhang, and Jingling Xue. A Dynamic Analysis Tool for Memory
Safety Based on Smart Status and Source-Level Instrumentation. In Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion Proceed-
ings, pages 6–10. IEEE, 2022.

[10] Zhe Chen, Qi Zhang, Jun Wu, Junqi Yan, and Jingling Xue. A Source-Level Instrumen-
tation Framework for the Dynamic Analysis of Memory Safety. IEEE Transactions on
Software Engineering, 49(4):2107–2127, 2022.

[11] Luis Diogo Couto, Peter W.V. Tran-Jørgensen, René S. Nilsson, and Peter Gorm Larsen.
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