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Introduction 
The CERT Insider Risk team collects information about insider threat incidents to support the re-
search and development of methods, tools, and processes for detecting and mitigating insider inci-
dents. We collect this data primarily from United States federal criminal court cases and code it into a 
set of specific fields consistent with the IIDES schema [SEI IIDES]. We maintain the encoded data for 
analysis in a Software Engineering Institute (SEI) Database called Management and Education of the 
Risk of Insider Threat (MERIT) [SEI 2013].  

There are about 50 insider threat court cases per month in the U.S. federal criminal court system. The 
number of these cases has created a backlog of thousands of insider threat cases awaiting encoding for 
MERIT. Our goal is to use machine learning (ML) to assist with coding incidents. The court cases 
consist of unstructured data, including scanned documents, e-filed documents, and webpages. A fully 
coded case might consist of over 200 fields. The information for these fields could be spread across 
many different documents, making manual coding tedious. In this paper, we investigate the usefulness 
and design methodology of applying large language models (LLMs) to improve and automate the pro-
cess of coding case data. We introduce tools to guide LLMs [Vaswani 2017] to assist in this coding 
process. We show initial results and lay groundwork for further research in this field in the hopes that 
the larger scientific community will contribute to solving the problem of coding specific fields from 
unstructured data.  

____________ 

  CERT is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 
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Figure 1: Our Problem Area  

(We have a corpus of text, X, that contains information about our case, and we would like to 
find/create/learn a function F that given X can output Y, the set of database fields. Note that the 
redaction boxes exist only in this paper, not in our source documents.) 

Previous Work 

Previous work in extracting information from text focused on using convolutional neural network 
(CNN) [Le Cun 1990], optical character recognition (OCR), and/or graph neural networks (GNN) 
[Zhou 2018] to model the text. Many times, this approach was used for extracting key fields from 
structured text documents that have slight differences among them.  

PICK1 [Yu 2020b] extracts vision features as well as textual features using CNNs and OCR to process 
and extract key information from structured documents such as invoices, tickets, and receipts. The vi-
sion and textual features are used to create a knowledge graph of the document to capture semantic 
connections across the document. Yu’s work introduces a new perspective on key information extrac-
tion (KIE) by creating a knowledge graph of the features in a document to model dependencies across 
key information.  

Other key related work is Attend, Copy, Parse [Palm 2018], which uses a CNN and OCR to extract 
targets from the text and convert them to a desired output format. This model works by extracting and 
encoding text into a memory bank. When given a target as input, the model attends to its memory to 
find the information and then parses it into the desired format.  

____________ 

1  PICK stands for Processing Key Information Extraction from Documents Using Improved Graph Learning Convolu-
tional Networks. 
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These approaches differed from a solution to our problem, since they were designed for highly struc-
tured text documents. However, we use some principles of the key information extraction outlined in 
both approaches for our own tools when utilizing LLMs. 

Initial Testing  

Our development process began with a simple question-answer (Q&A) session with models to gauge 
the difficulty of our task for LLMs. We started with manually cleaned text, and we asked key infor-
mation-retrieval questions for various fields a coder would need to fill out an insider incident. From 
our testing, we determined that the ability of models to extract key information was quite good for 
some prompts, and it retrieved the correct information a high percentage of the time. However, the 
format was highly volatile, since the output would change drastically between models and prompts. 
Our initial testing also showed that it was important that the context be concise and clean for accurate 
retrieval. Given that court records are not at all concise or well structured, developing a method for 
finding the right context to pass to an LLM was a major hurdle. 

 
Figure 2: Example Q&A Input, Context, and Output from an LLM (LLaMA3) 

(The input queries for the field names and the context provided in the first page of the docket, 
which is verified to have all the information that should be returned.) 

Given the results of the Q&A, particularly the issue of specifying an appropriate context for our mod-
els, our next inclination was to try the new open source vision-language models (VLMs) [Liu 2023, 
Bordes 2024]. These VLMs were recently released and held promise for helping us solve our problem, 
since they could cut out one of the longer steps in our process: OCR scanning and text preprocessing.  

Most VLMs are designed for object recognition, scene description, and other object-oriented tasks ra-
ther than text recognition. The process typically involves downsampling from a high-resolution image. 
Since encoders are trained for object-oriented tasks, downsampling does not destroy the main features 
the encoder used to determine the object in images. Even though our portable document format (PDF) 
files are high resolution, downsampling destroys many of the features of text in an image. The effec-
tive receptive field of these encoders is therefore not set on the same granularity of the text in the im-
age of the PDF [Luo 2017, Raghu 2021]. This shortcoming was quite evident in the answers given by 
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our models. They were able to understand the structure of our document, but they were unable to re-
trieve exact key information; instead, they tended to generate fake court titles, names, etc.  

Figure 3 shows the output of one test. The input prompt is the same as the one depicted in Figure 2: a 
query for the field names in the object. The image provided is the first page of the court docket. The 
model gets the country, state, district, and court type correct, but the rest of the information is incor-
rect, and most of it is not present in the document at all. 

 
Figure 3:  Example Q&A with LLaVa-LLaMA3 (Liu et al., 2023) 

(The model gets some output fields correct (i.e., court country, state and district, court type). The 
case number is incorrect, the title and defendants are incorrect, and they are not present in the 
document at all.) 

Through our experiments, we found that the state of vision encoders for these documents is not on par 
with OCR models. Given advancements in vision encoders, we believe this path may become more 
fruitful. There have been recent advancements in large image modeling that may prove to be useful in 
this domain [Xu 2024, Ge 2024]. In the short term, the next best option for us is to use current state-
of-the-art OCR techniques, specifically Tesseract [Smith 2007], to extract text from our PDF files ra-
ther than using VLMs. 

Development 

Equipped with the results of our initial testing, we focused on two objectives for getting the best out-
put from our LLM case coder: 
1. Our models need clean and relevant context to retrieve the correct information. 
2. Our models should have consistent structured output to comply with the database schema and fa-

cilitate automated case coding. 
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Retrieval Augmented Generation 

We implemented retrieval-augmented generation (RAG) [Lewis 2020] to automatically retrieve rele-
vant context for our models. RAG is a new development in the LLM space and allows us to attempt to 
provide relevant context to our models to help them create a viable output. In our case, we want our 
RAG system to suggest the best text based on the object (e.g., a court case or a person) we are generat-
ing. This text should contain the information needed to fill in the fields of the object (e.g., charge, case 
title, name). To create a RAG system, first you create embeddings and vector representations of the 
text or chunks of text using an encoder. You can then store these embeddings in a vector database and 
query the database for the most relevant text or text chunks. In many cases, the user prompt is used as 
the query prompt. The prompt is embedded, and then the text or text chunks nearest to the prompt’s 
embedding are considered the most relevant. RAG works for many use cases but not for our use case, 
since the information we provide to our models from the user is only the name of the object we want 
to encode (e.g., court case or person).  

 
Figure 4: A RAG System 

(A user/actor provides a prompt, the prompt is embedded, and the chunks nearest to the prompt 
in the vector database are retrieved and provided to the model to assist in answering the 
prompt.) 

Our system, instead, takes the schema of the desired object (i.e., the list of desired fields) and uses the 
descriptions of the fields to query the vector database. This approach is intended to retrieve the most 
relevant context for the fields that the model will use to extract information. The descriptions of the 
fields are used instead of the field names, since the descriptions will contain more keywords related to 
the requested information. Thus, the embedding will be closer to the desired information and will im-
prove the performance of our models.  

For text preprocessing, normal RAG systems tend to apply lemmatization and remove stop words, 
numbers, and special characters. These preprocessing augmentations create good representations of 
text in terms of embeddings; however, they destroy the information needed for correctly filling in in-
formation that will be used later in other analyses. To resolve this problem, we store two versions of 
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each chunk of text: (1) the fully preprocessed text used for creating embeddings and (2) the plain text 
retrieved and used as context for our models.  

 
Figure 5: Our RAG System 

(A user/actor provides an object name. Then, the fields and their descriptions are embedded. 
The nearest chunks are then retrieved and used to generate the output JavaScript Object 
Notation (JSON) object.) 

Improving Model Output Consistency 

To improve the consistency and structure of our output, we first started with prompt engineering. We 
prompted models to use JSON output formatting and then attempted to turn the model output into our 
specific database format. This format conversion worked well; however, the models seemed prone to 
adding unnecessary fields or not formatting the information in the format we wanted. To resolve this 
problem, we focused on using the JSON schema that we desired in our prompts. This approach led us 
to discover open source models that were fine-tuned on JSON generation. These models specifically 
took JSON schemas as input along with the information and generated the output. We found that using 
these models improved model output a great deal. However, the models performed less well on key 
information retrieval, which meant we needed to find a middle ground between JSON fine-tuned mod-
els and key information retrieval models. One way to approach this middle ground was to use models 
trained to produce code. Since JSON is an extension of JavaScript, models trained to produce JavaS-
cript and retrieve key information were quite good at performing our task. We found that, much of the 
time, they were able to understand our task and field schema and produce the correct output format-
ting.  

 
Figure 6: Example Prompt Used with a JSON Fine-Tuned Model 

(The schema tags “<schema></schema>” identify the schema the model needs to follow.)  
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Guiding Model Output and FIM Prompting 

Even the JSON fine-tuned models still added extra fields and nonsense answers or misidentified per-
sons in the text. To fix this problem, we realized that our models needed more guidance, and we de-
cided to use a “chain-of-thought”-like approach [Wei 2022], which we called “chain of field.” This 
prompting method prompts for each field individually. This approach adds more calls to our process, 
but it also increases the accuracy of our system. Using chain-of-field prompting, we can use previ-
ously LLM- or human-generated answers to populate fields and provide additional guidance and con-
text for generating the objects. Code models also have special prompting methods called fill-in-the-
middle (FIM) [Bavarian 2022], which allows you to provide a prefix and suffix in your prompt, and 
the model then attempts to fill data between them. As an added benefit, using FIM prompting prevents 
the model from changing the JSON format we require for our schema. By leveraging these tools from 
code models, we found our best performing models and used them in our final design.  

 
Figure 7: Sample Prompt for the Fill-in-the-Middle Prompting Technique for Code-Trained Models 

(The model fills in between the fill tags, <FIM></FIM>. Other models require other forms for FIM, 
such as providing prefix and suffix tags. In this toy example, the model was given only the last 
name of a person, and it can search a document for the rest of the details about that person.)  

Levels of Autonomy 

The system and tools we discuss in this section can exhibit three different types of autonomy:  
• full autonomy  
• supervised autonomy  
• LLM assistant 

Which type of autonomy is most suitable depends on the use case. For our case coding, the most suita-
ble type it uses greatly depends on which object we want to create (e.g., court case, person, victim or-
ganization). 

Fully Autonomous Coding 

We define full autonomy as having minimal to no human in the loop. This type of approach is ideal for 
objects such as the court case and even persons in the case. With the correct context, the model can fill 
in all the fields, validate the information, and resolve errors. Ideally, these tasks are performed as part 
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of an ingestion step that happens before a human coder sees the case. Then, when a human coder 
opens the case, they can correct any inaccuracies.  

Pseudo code for this process entails going through every object in the schema and generating infor-
mation for each field individually. The real system also includes steps where it can inform itself, such 
as using the defendants in the court case object to generate a person object for each of them. After an 
object is made, it is validated and then the errors, if any, are resolved.  

 
Figure 8: Fully Autonomous Behavior of Our System 

(The model iterates over the schema, generating all the objects it can. It can inform itself about 
certain objects using our tools, such as using the defendants field to generate person objects.) 

Supervised Autonomous Coding 

The next possible type of autonomy is supervised autonomy, where a human in the loop guides the 
process of coding a case using an LLM. The human tells the model which objects to create and with 
what information. This role of the human could greatly improve the efficiency of coding a large da-
taset, since the human in the loop can create objects, fill in information, and then let the model fill out 
the rest of the object. The model validates and resolves errors in the object before returning it, and 
then the human can resolve more complex errors or correct inaccurate answers.  
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Figure 9: Semi-Supervised Autonomous Behavior  

(A human can choose objects to generate and provide partially complete objects for the model to 
finish.) 

LLM Assistant Coding 

The last type of autonomy is Document Q&A, or a copilot type of behavior. We use our RAG system 
to chat with a model about a case instead of filling out objects. This use of RAG may be helpful for 
very complex objects, such as legal responses and tactics, techniques, and procedures (TTPs). The hu-
man can copy and paste text into a chat box when there is a specific paragraph or document they want 
answers from. This selection allows the most flexibility for the user in deciding what to do with the 
fields and LLM outputs. 

 
Figure 10: LLM Assistant Behavior of the System  
(The user treats the model as a chatbot and can prompt for answers and ask for summaries of the case.) 
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Error Resolution 

As is often expected with these types of models, our system still had errors. However, a human in the 
loop can prompt the model to resolve them in separate calls to the system. This way, the model can 
focus on resolving the error independently of key information retrieval. Errors that can be easily cor-
rected include those incorrectly implementing the desired schema or not using the correct schema vo-
cabulary. For instance, a model might answer the country field with “United States” instead of the de-
sired “US.” Errors can be resolved using the schema directly if the output falls within the dictionary of 
vocabulary; however, if the error is more complex, we can prompt an LLM to resolve it, which works 
quite well. 

Experimental Setup 
To empirically test the performance of our system, we decided to test different models against a sys-
tem of regular expressions on two different schema objects: court case (easy) and person (hard). 

We tested six models across four different examples of high-profile public cases. Each model used the 
same configuration file, which included parameters such as context window, temperature, and system 
prompt. It is possible that each model would have an ideally performing configuration; however, with 
only four examples on which to base our parameters, these adjustments were outside the scope of our 
experiment.  

The models were benchmarked against a series of custom regular expressions for each field as well as 
some intuitive heuristics to retrieve fields. For example, a court case number includes the case type in 
it: cv for civil and cr for criminal. Creating such regular expressions for each field requires significant 
engineering for most fields; however, for the easier objects (e.g., court case) it is quite trivial, assum-
ing the documents remain in the same structure (e.g., court case dockets are consistently formatted). 

LLM as a Judge 

For a few fields (e.g., case number), judging our results could be done using regular comparators. For 
more open-ended fields (e.g., names of defendants and plaintiffs), we needed a more adaptive ap-
proach. For example, the ground truth of the plaintiff field could be “USA,” but other acceptable an-
swers would be “United States,” “US,” and “United States of America.” Similarly, for a person, the 
ground truth could be “John Adam Doe,” and acceptable answers would be “John Doe” or “John A. 
Doe.” Rather than enumerating all acceptable answers for each field, we use an LLM to judge the sim-
ilarity of the two answers on a scale of 0 to 1, where 1 is the exact ground truth. We chose this score 
as our metric since it is better able to calculate the correctness of our use case than other string com-
parison metrics. For example, edit distance [Ristad 1998] would not present consistent scores across 
different valid answers, since the edit distance between “US” and “United States” is larger than the 
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edit distance between “United States” and “United Kingdom” even though “US” is much more correct 
for our use case. 

Results 

A speed benchmark was done on an M1 Max MacOS laptop with 32 GB of RAM using Ollama 
[Ollama 2024]. Using the Codestral 22b [Ai 2024], our process takes around 1 minute per call. Since 
there is a call for each field, this can take around 36 minutes to code one case autonomously. This 
could be trivially reduced by better models, hardware, or using proprietary model application pro-
gramming interfaces (APIs) (e.g., OpenAI’s ChatGPT) [OpenAI 2023]. At around a dozen new cases 
per week, 36 minutes is perfectly acceptable. If, as expected, these tools are integrated into an applica-
tion for data coding, a human in the loop would likely reduce the number of unnecessary calls for 
fields or whole objects that the human knows are not needed for the case. 

For our performance experiments, we tested six different models ranging in size from 7B parameter 
LLaMA architecture [Touvron 2023a] to 9b Gemma2 architecture [Team 2024], and our largest was a 
22B mixture of experts [Artetxe 2021]. We used the same model configuration for all models, though 
there was an opportunity to create the best configuration for each individual model. We decided to use 
the same configuration across all models to keep the experiment fair.  

There are four ground truth examples; we tested two of each example’s objects: an easy court case ob-
ject and a harder person object. The court case has 9 scorable fields, while the person object has 15 
scorable fields.  

We allowed each model to go through error resolution once to attempt to resolve errors prior to grad-
ing. We tested six different models; however, there are hundreds of others that could apply, and there 
are new models every day that are bigger, better, and more efficient. We chose these six based on their 
popularity at the time of our experiment. We benchmarked these models against a series of regular ex-
pressions with one static expression per field.  

Court Case Object Tests 

In Figure 11, we can see that Codestral [Ai 2024] and LLaMA3.1 [Dubey 2024] perform quite well at 
coding court case objects, meeting or exceeding regular expressions on some examples, while others 
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fall short. We can also see that all the models performed quite poorly on Example 3, and from here on, 
we decided to omit that example so that it does not interfere with representative performance.2  

 
Figure 11: Average Score per Model vs. Example on Court Case Objects 

In Figure 12, we can see that the easiest fields for the models to process are the case number, title, 
court country, state, and district. While the most difficult fields are court type, case type, defendant, 
and plaintiff. We think the reason for this is that the easier fields are key information retrieval while 
the other fields are reasoning fields. The reasoning fields are ones that do not state the answer in the 
document and may require the model to observe the information in the document and decide what is 
the appropriate answer. For instance, for case type, you may consider the charges as well as the plain-
tiff to determine if it is a civil or criminal case.  

____________ 

2  Example 3 was a civil case, which is quite rare in our data. 
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Figure 12: Average Score per Field of a Court Case Object (Excluding Example 3) 

With regular expressions, however, there are some hints in the docket text that can be exploited. For 
instance, we can get the case type from the case number, and the court type can be based on the dis-
trict of the court. Models may also be able to learn these tricks through in-context learning or few-shot 
learning. 

 
Figure 13: Average Score per Field of a Court Case Object for Each Model  

Figure 13 shows which models are perhaps better at key information retrieval versus reasoning fields; 
however, the general trend is that the newer models perform best. Code Llama is the LLaMA2 
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architecture [Touvron 2023b], and Nous Hermes 2 Pro [Nous Research 2001] is a Mistral [Jiang 2023] 
model that is fine-tuned on a custom synthetic dataset. These older architectures were trained on older 
datasets and show the drastic improvement in the general ability of open source models over time. 

We can also see regular expression performance against the models on certain fields. These results 
help us determine which fields to grab with regular expressions in a production system and which 
fields would be best done with an LLM model. 

 
Figure 14: Average Score per Field in a Court Case Object vs. RAG Mode (Excluding Example 3) 

The average performance of the models across the fields based on the RAG mode, specified or nor-
mal, is shown in Figure 14. We can see that, for five fields, specifying the RAG mode to select from 
one document improved performance slightly, and for some (e.g., case number and case type), it im-
proved a lot. For other fields, the RAG mode had less of an effect or a negative effect but not by a sig-
nificant amount. This result may be due to randomness (in some cases) or our small number of exam-
ples. 

This result is interesting because it shows that humans having some supervision in the process can 
help with coding fields. However, it could be that the best chunk of information is the same in both 
modes, but the requested answer was incorrectly retrieved in the normal mode. 

Person Object Tests 

We next tested a person object, which is quite difficult compared to the court case object. The infor-
mation can be spread across many different documents. It was not possible to use regular expressions 
on this object, since the information does not follow regular patterns like it does for a court case ob-
ject. It is for this reason that we are experimenting with LLMs.  
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Figure 15: Average Score per Model vs. Example on Person Objects 

We can see that the models performed worse on this object than the court case object (Figure 15), but 
they performed quite well on a few fields, which indicates that this object is best done in tandem with 
a human (Figure 16). The model can fill in the fields it can, and the human can correct and find the 
rest of the fields.  

 
Figure 16: Average Score per Field of Person Object Excluding Example 3 
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Some court documents do not have all the information requested by the schema; therefore, neither a 
human nor an LLM could identify information such as the city or postal code of the person. 

Common Errors 

Common mistakes that models make include repeating the prompt or schema as an answer, anonymiz-
ing people’s names, and mistaking people for different roles. Repeating the prompt is common when 
the context fills up or the model is not designed to have a long context window. Our prompts, includ-
ing the context and schema, were around 10,000 tokens, which means, for models with smaller con-
text windows, errors might occur. This type of error can be corrected by using larger model context 
sizes, which is an increasing trend in new open source models— with many current models scaling 
from 4k, 8k, 32k, and now 128k token windows over the last few years [Ding 2024]. 

Anonymization can occur due to a training or licensing issue. Some models are trained to be censored 
and “safe.” This training can mean that the models are prohibited from doing certain actions or work-
ing within certain contexts. Models can then refuse to use people’s names or refuse to generate an-
swers that would be considered harmful. One example case had a charge that involved child sexual 
abuse material, and models tend to avoid this sort of information. Models also tend to mistake attor-
neys or “interested parties” on the docket as defendants or plaintiffs [Glukhov 2023]. This mistake 
was quite common throughout the development process. It shows that unstructured text is quite diffi-
cult to parse because of (1) the many escape characters and (2) a lack of understanding the surround-
ing text. For example, the model may “understand” that a defendant should be a person/entity, so it 
retrieves a name of a person, but it retrieves a nearby name that is incorrect. 

Conclusion 
In this paper, we presented some tools and design methodologies to address the problem of guiding 
LLMs to create structured outputs from unstructured text for the purpose of coding incident cases in a 
large database. We also presented our implementation of these tools and three different types of auton-
omy. Our approach shows good performance and potential compared to regular expressions and is a 
good starting point for future researchers to tackle this problem in this domain and others.  

Next Steps 

The next steps in this project are at the forefront of LLM development. RAG is currently one of the 
hottest topics of research due to its performance boost for LLMs and its potential to replace search en-
gines. Recently, Microsoft released Graph RAG [Edge 2024], which utilizes knowledge graphs in-
stead of embedding spaces. Also, open source models are improving over time; a better open source 
model may be released that can either run faster or offer greater performance. In less than a year, open 
source models reached greater than human abilities on the first set of multitask language benchmarks, 
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and new benchmarks had to be made. Currently, the top open source models are averaging 46% across 
all tasks on the newest benchmark leaderboard but, it is only a matter of time before they reach the hu-
man score as they did previously [Open LLM 2024].  

Within the system itself, there is a lot of room for improvement in the packaging and tooling that we 
have started to make. For instance, using a framework such as LangChain [Pandya 2023] or DSPy 
[Soylu 2024], we can create cleaner code and classes as well as utilize all their tools for monitoring, 
analyzing, optimizing, and training our models. Once our existing MERIT database is fully converted 
into an IIDES conformant schema [SEI IIDES], we will have ~1,500 incidents, each with 10-12 ob-
jects to use as examples for fine-tuning (Figure 17). 

 
Figure 17: Example of Fine-Tuning a Model for this Task Using the IIDES Database 

Overall, this task is quite complex and especially unique. A lot of today’s LLM research focuses on 
agents that perform small tasks to complete a larger task and have some way of organizing and decid-
ing what tasks to do. The agents are provided with specific tools and functions to assist in completing 
their task. Our problem area could be seen as quite agent-like in nature, and it would be interesting to 
see where future research goes in terms of the ability to complete complex agent-like tasks, since this 
future research could help improve our insider incident data collection. 
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Appendix: Supplemental Materials, Court Case Objects, and 
Person Objects 

Supplemental Materials 
• Introduction to LLMs by Mark Riedl [Riedl 2023] 
• Introduction to RAG by Piyush Thakur [Thakur 2023] 

Court Case Object 

 
Figure 18: Average Score per Example Incident Case vs. RAG Mode  

https://mark-riedl.medium.com/a-very-gentle-introduction-to-large-language-models-without-the-hype-5f67941fa59e
https://wandb.ai/cosmo3769/RAG/reports/A-Gentle-Introduction-to-Retrieval-Augmented-Generation-RAG---Vmlldzo1MjM4Mjk1
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Figure 19: Average Score per Field in a Court Case Object vs. RAG Mode 

 
Figure 20: Average Score per Field of a Court Case Object 
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Figure 21: Average Score per Model vs. RAG Mode (Excluding Example 3) 

 
Figure 22: Average Score per Model vs. RAG Mode 
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Person Object 

 
Figure 23: Average Score per Field of a Person Object for Each Mode (Excluding Example 3) 

 
Figure 24: Average Score per Model vs. RAG Mode  
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Figure 25: Average Score per Example vs. RAG Mode 

 
Figure 26: Average Score per Field of a Person Object vs. RAG Mode  



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23 
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution. 

 
Figure 27: Example Improvement That Having the Correct Context Can Give in Terms of Retrieving the 

Correct Information from the Context 

 
Figure 28: What Our Preprocessing Steps Produce 

(For each text chunk, the process results in a (1) context chunk that has minimal to no 
destructive augmentations and an (2) embedding chunk that has destructive augmentations. The 
embedding chunk is put into the encoder to create an embedding, and then it is stored in the 
vector database, while the context chunk is returned from the vector database and used by the 
LLM to answer the prompt.) 
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