
BLC: Blocklist Co-occurrence Analysis

for Large-scale IP Network Traffic Flows

Shosuke Oba1, Kazunori Kamiya1, Kenji Takahashi1, Yasuyuki Hamada1,

Kazumichi Sato2, Toshiaki Sudo3

1 NTT Security Holdings,
2 NTT Network Service System Lab., 3 NTT Communications

Background

• A botnet is a group of malware-infected hosts that launch various cyberattacks.

• To eliminate botnet threats, as the first step we need to understand the entire picture of

botnet infrastructures by

• detecting components in a botnet, and

• identifying the relationships between them

2

Example of hierarchical botnet structure

Bot

Lower

C&C

Upper

C&C Victim

Scanning, DDoS,

Spamming, etc.

Problem Statement 1/3

• Many existing methods focus on traffic analysis in a user network.

• However, they lack the visibility of layered and distributed botnet infrastructure.

• Large-scale traffic analysis at the Internet backbone is necessary.

3

Traffic analysis

in a user network

C&C

User NW

Bot

Internet
Large-scale

traffic analysis

Internet

User NW

C&C

Bot

Invisible from

a user NW

Problem Statement 2/3

4

C&C detection by ML Graph approach

• Quantity

• Frequency

• Number of contacts

• Time of day

Detect C&C by analyzing their

communication behaviors individually

but not collectively

Grasp a group (or botnet) of collaborating

hosts by analyzing communication

between them

Bot

Upper C&C

Web service

Other C&C

Victim

User

Probing

Problem Statement 3/3

• In an Internet-scale network, the number of neighbors of a given host can be very large.

• Therefore, it is essential to have an algorithm that can efficiently detect malicious hosts

from the huge graph.

5

1-hop neighborhood 2-hop neighborhood

Basic Idea for Detection

• We propose a novel detection method, BLC (BlockList Co-occurrence analysis).

• To detect malicious servers on the IP graph, we use detection by co-occurrence [1].

• Malicious actors might prepare not only 1 malicious server but several servers.

• Infected hosts might connect to several malicious servers.

• For efficient detection on huge graph, we additionally use pruning technique.

6

Bot

C&C

[1] K. Sato, K. Ishibashi, T. Toyono, H. Hasegawa, and H. Yoshino, ‘‘Extending black domain name list by using co-occurrence

relation between DNS queries,’’ IEICE Trans. Commun., vol. E95.B, no. 3, pp. 794–802, Mar. 2012.

Proposal: Graph Construction

• We generate a graph of communication relationships between IP addresses from flow data.

• The graph is undirected, because the sampled flow data do not always tell us which host

initiated the communication.

7

SrcIP DstIP …

192.168.2.1 192.168.2.100

192.168.2.6 192.168.2.100

192.168.2.100 192.168.2.1

192.168.2.103 192.168.2.100

: :

192.168.2.1

192.168.2.6 192.168.2.103

192.168.2.100

Flow Graph

Proposal: Listing Up Candidates

• We assume all IPs communicating with blocklist IPs are bots.

• IPs communicating with bots that are neither bots nor blocklist IPs are considered

malicious IP candidates.

8
Seeds: Blocklist 1-hop: Bot Candidates 2-hop: C&C Candidates

Proposal: Score Calculation 1/2

• Co-occurrence between hosts is calculated by the similarity of the communication

destination set.

• To reduce the effect of noisy nodes such as scanners, it is calculated as a weighted

Jaccard Index of neighborhood as follows:

C(ℎ𝑖 , ℎ𝑗) =
σ𝑣∈𝑁 ℎ𝑖 ∩𝑁(ℎ𝑗)

1/|𝑁(𝑣)|

|𝑁 ℎ𝑖 ∪ 𝑁(ℎ𝑗) |

9

Noisy bots add only low

co-occurrence degree.

Co-occurring by the node

※ 𝑁(𝑣) : neighborhood of node(s) 𝑣
ℎ𝑖 : 𝑖-th host

Proposal: Score Calculation 2/2

• Since bots often communicate with benign services to check for connection,

we consider malicious weight by rate of bots in neighborhood:

W ℎ𝑖 =
|𝑁(𝐻𝑚𝑎𝑙) ∩ 𝑁(ℎ𝑖)|

|𝑁(ℎ𝑖)|

• The final malicious score is product of co-occurrence and malicious weight:

Mal ℎ𝑖 = W ℎ𝑖 × ෍

ℎ∈𝐻𝑚𝑎𝑙

C(ℎ, ℎ𝑖)

10

Benign server (Google, Facebook, etc.)

communicate with many benign hosts.

Malicious servers communicate with

malicious hosts.

※ 𝐻𝑚𝑎𝑙 : Set of blocklist hosts

Proposal: Pruning Technique 1/2

• To calculate the scores for all C&C candidates, we need the weighted Jaccard index

calculation of (# block list IPs) x (#C&C candidate IPs) times.

• This is a very time-consuming operation because the size of a 2-hop neighborhood can

be very large in an Internet-scale graph.

11

Blocklist

Bot

Candidate

C&C

Candidate

Proposal: Pruning Technique 2/2

• The following pruning heuristic is applied.

12

(1) high degree bot candidate

Reason: noisy scanner or

legitimate server

(2) small malicious weight

Reason: legitimate server

(4) communicating to only a few bot

Reason: insufficient evidence

(3) communicating to too many hosts

Reason: unlikely to be C&C

Evaluation: Dataset and Parameters

• Flow data: Real flow data of a large network

• Blocklist: Seed blocklist (general C&C, IoT C&C)

13

Statistics of data: proposed pruning parameter:

Parameter Meaning

bot_deg = 100 degree of bot candidate > bot_deg

weight = 0.1 malicious weight > weight

c2_deg = 1000 degree of C&C candidate < c2_deg

comm_bot = 4 # of communicating bots > comm_bot

Item Size

Flow records (per day) 2.2 × 109

Graph nodes (per day) 1.8 × 108

Graph edges (per day) 6.3 × 108

General C&C blocklist 3932

IoT C&C blocklist 483

Evaluation: Validation with Analyst 1/2

The result of the proposed method (BLC)

• We extract 100 most suspicious host per day for 1 month.

• The result is validated by a security analyst using OSINT, which is independent of the seed block list.

14

General C&C

blocklist

IoT C&C

blocklist

Used blocklist #detected C&C server #C&C / #Unique IPs

57 / 909

32 / 862

Percentage expansion

of block list

57 / 3932

= 1.4%

32 / 483

= 6.6%

Evaluation: Validation with Analyst 2/2

The result of the conventional method (BLC without pruning)

• It detects fewer C&C servers than the proposed method.

15

IoT C&C

blocklist

19 / 1382

7 / 859

19 / 3932

= 0.5%

7 / 483

= 1.5%

General C&C

blocklist

Used blocklist #detected C&C server #C&C / #Unique IPs Percentage expansion

of block list

Evaluation: Effect of Pruning

Change in computation time with pruning

• Proposed pruning significantly reduces computation time.

• The score calculation is parallelized on 32 cores.

16

Method #2-hop nodes Process time

(minutes)

Similarity※ of top 100 IPs

with conventional method

Conventional method [1]

(BLC without pruning)
5.4 x 107 161.4 100%

BLC (bot_deg=3000,

weight=0.1)
8.9 x 106 26.6 98%

BLC (proposed pruning) 1.4 x 105 0.7 28%

[1] K. Sato, K. Ishibashi, T. Toyono, H. Hasegawa, and H. Yoshino, ‘‘Extending black domain name list by using co-occurrence

relation between DNS queries,’’ IEICE Trans. Commun., vol. E95.B, no. 3, pp. 794–802, Mar. 2012.

※by Jaccard index

Limitation

• The proposed method assumes that bots communicate directly with multiple C&C servers.

Therefore, It is not effective in the following cases:

17

Each bot communicates with only one C&C.

(C&C servers are not connected.)

C&C and bots communicate through

proxy servers.

Conclusion

• We propose a method (BLC) to detect malicious hosts related to the given

blocklist hosts from flow data.

• It works efficiently even for Internet-scale IP network traffic flows and is

mote than 100 times faster and higher precision than conventional method.

• Evaluation using large real flow data show that BLC find many C&C servers.

18

Appendix: Malware Types

• BLC detects hosts that are the C&C servers for the following malwares.

19

from general C&C blocklist from IoT C&C blocklist

	BLC: Blocklist Co-occurrence Analysis for Large-scale IP Network Traffic Flows
	Background
	Problem Statement 1/3
	Problem Statement 2/3
	Problem Statement 3/3
	Basic Idea for Detection
	Proposal: Graph Construction
	Proposal: Listing Up Candidates
	Proposal: Score Calculation 1/2
	Proposal: Score Calculation 2/2
	Proposal: Pruning Technique 1/2
	Proposal: Pruning Technique 2/2
	Evaluation: Dataset and Parameters
	Evaluation: Validation with Analyst 1/2
	Evaluation: Validation with Analyst 2/2
	Evaluation: Effect of Pruning
	Limitation
	Conclusion
	Appendix: Malware Types

