
RESEARCH REVIEW 2024

Our tool identifies flows of
information that indicate
malicious code inserted as
a supply-chain attack and
provides detailed summaries
for human adjudication.

Introduction
The Department of Defense uses
a lot of software produced by
various supply chains, which can be
compromised by an adversary.

Examples: xz backdoor incident of
2024; SolarWinds incident of 2020

Our tool is designed to detect
exfiltration of sensitive information
as well as timebombs/logic bombs,
remote-access Trojans, etc.

Overview of Approach
Our tool flags code as
potentially malicious; however,
further human analysis is required
to determine whether the code
is actually malicious, because
whether behavior is malicious
depends on what the program is
supposed to do.

Our tool detects vulnerabilities
such as Log4Shell in Log4j, but
vulnerabilities involving undefined
behavior are out of the tool’s scope.

We are using only static analysis,
not dynamic analysis. We have
focused on C/C++ codebases,
and our tool works natively at
the level of LLVM intermediate
representation (IR). We also have
some support for binaries by lifting
to LLVM IR.

Initially, we built on PhASAR, a
static-analysis framework based
on LLVM. However, PhASAR had
trouble scaling to real-world
codebases, so we reimplemented
directly on top of LLVM. This proved
much more scalable but less precise.

Static Taint Analysis
Sources are designated system
application programming interface
(API) functions that return
potentially sensitive information.

Sinks are designated system
API functions that can exfiltrate
information to outside the program.

Usually, a static taint analysis
conflates together all flow paths
from a given source to a given sink.
Therefore, a malicious flow path can
be “hidden” by a benign flow path.
To avoid this, we separate the flows
by features relevant to detection of
malicious code.

Source Code
(C or C++) and build
commands for Clang

Codebase

Binary via
GhiLift

OR

LLVM IR
“.ll” file

List of sensitive sources
and sensitive sinks

DMC Tool
(“Detection of

Malicious Code”)

Tool output:
Sensitive source-to-sink
flows along with auxiliary
dataflow analysis

Human
adjudication

[
{"sink": {"func":"write", "callsite":["mal-client-3.c","main",152,21],
 "aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},
 "srcs": [{"func":"fread", "callsite":["mal-client-3.c","main",139,29],
 "aux file": [{"func":"fopen", "callsite":["mal-client-3.c","main",132,26],
 "aux file": [{"func":"getline", "callsite":["mal-client-3.c","main",106,26], "FILE*":"stdin"},
 {"func":"getline", "callsite":["mal-client-3.c","main",117,30], "FILE*":"stdin"}]}]}]},
...
]

Sink:
Network

Source:
File
System

Benign flow:
user chooses a file

and enters a
command to upload it

Malicious flow:
program waits for attacker
to connect and then sends
file with hardcoded name
"secrets.txt"

write

socket

fread

fopen

FILE*

filename

file
descriptor

getline
stdin

Example with Benign and Malicious Flows

Visualization of Example Tool Output

Example Tool Output

Detection of Malicious Code Using Information Flow Analysis

Will Klieber| weklieber@sei.cmu.edu
[DISTRIBUTION STATEMENT A]

Approved for public release and unlimited distribution.
DM24-1460

6303_Klieber_6-23_6221_2_2.indd 16303_Klieber_6-23_6221_2_2.indd 1 10/31/24 11:54 AM10/31/24 11:54 AM

