Detection of Malicious Code Using Information Flow Analysis

Introduction

The Department of Defense uses

a lot of software produced by
various supply chains, which can be
compromised by an adversary.

Examples: xz backdoor incident of
2024, SolarWinds incident of 2020

Our tool is designed to detect
exfiltration of sensitive information
as well as timebombs/logic bombs,
remote-access Trojans, etc.

Overview of Approach

Our tool flags code as

potentially malicious; however,
further human analysis is required
to determine whether the code

is actually malicious, because
whether behavior is malicious
depends on what the program is
supposed to do.

Our tool detects vulnerabilities
such as Log4Shell in Log4j, but
vulnerabilities involving undefined

behavior are out of the tool's scope.

We are using only static analysis,
not dynamic analysis. We have
focused on C/C++ codebases,

and our tool works natively at

the level of LLVM intermediate
representation (IR). We also have
some support for binaries by lifting
to LLVM IR.

Initially, we built on PhASAR, a
static-analysis framework based

on LLVM. However, PhASAR had
trouble scaling to real-world
codebases, so we reimplemented
directly on top of LLVM. This proved
much more scalable but less precise.

Our tool identifies flows of
information that indicate
malicious code inserted as
a supply-chain attack and
provides detailed summaries
for human agjuaqication.

Codebase

Source Code
(C or C++) and build
commands for Clang

Tool output:

Sensitive source-to-sink
flows along with auxiliary
dataflow analysis

PQQ >
LLVM IR DMC Tool

“1I” file (“Detection of
Malicious Code”)

-

Binary via
GhiLift

Human
adjudication

E

List of sensitive sources
and sensitive sinks

[
{"sink": {"func":"write", "callsite":["mal-client-3.c","main",152,21],
"aux file": [{"func":"socket", "callsite":["mal-client-3.c","main",65,18]}]},
"srcs": [{"func":"fread", "callsite":["mal-client-3.c","main",139,29],
"aux file": [{"func":"fopen", "callsite":["mal-client-3.c","main",132,26],
"aux file": [{"func":"getline", "callsite":["mal-client-3.c","main",106,26], "FILE*":"stdin"},
{"func":"getline", "callsite":["mal-client-3.c","main",117,30], "FILE*":"stdin"}]}]}1},

Example Tool Output

Static Taint Analysis

Sources are designated system
application programming interface
(API]) functions that return
potentially sensitive information.

Sinks are designated system
API functions that can exfiltrate
information to outside the program.

Usually, a static taint analysis
conflates together all flow paths
from a given source to a given sink.
Therefore, a malicious flow path can
be “hidden” by a benign flow path.
To avoid this, we separate the flows
by features relevant to detection of
malicious code.

—_—
Ve Source:
~ | File
r:""""'.r_ Bn System
Benign flow: Malicious flow:
user chooses a file program waits for attacker
and enters a to connect and then sends
command to upload it file with hardcoded name

"secrets.txt"

v
v
[1[-o
= L sink:
Oo— ___l Network

==

Example with Benign and Malicious Flows

fread P write
A
FILE*
file
fopen descriptor
filename
stdin socket

—Pp getline

Visualization of Example Tool Output

Carnegie Mellon University
Software Engineering Institute

6303_Klieber_6-23_6221_2_2.indd 1

Will Klieber| weklieber@sei.cmu.edu

[DISTRIBUTION STATEMENT A]
Approved for public release and unlimited distribution.
DM24-1460

10/31/24 11:54 AM

