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Eliezer Kanal: Hello, and welcome to today's webinar, SEI's webinar. Today we're talking
about Secure Your Code using Al and NLP. My name is Elie Kanal. I'm a technical manager
here at the Software Engineering Institute. Thank you very much for joining me. I'm joined
today by Dr. Nathan VanHoudnos and Mr. Ben Cohen, both of whom are machine learning
research scientists here at the SEI. Thank you very much for joining me, guys.

So there's an awful lot that we do at the SEI. Part of our overall mission is helping write secure
code, helping generally to make sure that software is written in a secure way. One of the
techniques that has been pretty popular in a whole variety of areas recently has been natural
language processing, and something which we've been looking into is how we can apply that
technique to writing more secure code. So we thought we'd start off a little bit with how natural
language processing itself works as a practice. So, Ben?

Benjamin P. Cohen: Yeah, so if you're not familiar with natural language processing you've
still probably come across it just in your daily life. So if you've dealt with customer service chat
bots, autocomplete with your text messages, recommended replies through email, these kind of
things, NLP is kind of what's driving that under the hood. So NLP at a high level is how
machines extract information from language which is occurring naturally. So a typical pipeline
for NLP will start with something like raw text. You could do speech recognition as well, but
we'll focus on text. So you start with raw text, and then that text needs to be processed in a way
that's easy for machines to work with. So you acquire a representation of that text, and then
machines will basically study the data that you've given it and find sources of repetition, find
patterns in it and stuff, and then once that process is complete, you can use NLP for a variety of
tasks. So you can do things like predict what's going to come next, as in autocomplete; you can
create naturally occurring sequences of language, which you see with things like chat bots; and
SO on.

So, NLP has been around for a hundred years or so, but it's really blown up in the last maybe
decade and change. So the real reason this seems to be is because now we have large amounts of
data that are available in electronic form, which didn't used to be the case, and that's afforded us
a lot of insights and it's very easy for computers to work with that data. So given some of the
successes that NLP has had recently, our question is, "Can we apply this to source code?" When
you think about it, source code is really just a special example of a language. It's text, just like
everything else is, and it is a form of language, and we're curious to see if we can figure this out
and apply NLP to source code.

So, the reason that this is possible is because of something called the naturalness hypothesis. So
natural language is very repetitive and full of patterns, so even though there are poets, like Mary
Oliver, and playwrights like Shakespeare that use language in very sophisticated, nuanced ways,
and language is capable of conveying incredibly complex concepts, most of the conversations we
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have on a daily basis are kind of straightforward and repetitive. The naturalness hypothesis says
the same is true of source code. So if you can find the sources of repetition, that means you can
predict what's next and make use of that information.

Eliezer Kanal: So once you have such a representation-- once we understand, sorry, that text
and code in general is pretty repetitive, we have to now understand, "All right, so we have this
text in front of us. How do we get a machine to actually understand it?" And you can think--
you were mentioning before we have these different types of text that are now publicly available.
Project Gutenberg, for instance, has hundreds of thousands of books, and you can look through
all that, but when you're trying to get a computer to understand what's in the text, it's not looking
at the text itself. As it turns out, there are a variety of representations that the computer has to
use to understand what's in the text. It's not just looking at the words as you and I do. So to that
extent, we have this little chart here which shows all the different levels at which code can be
understood by either a trained linguist or by a computer, and when you're trying to have the
computer understand what it's looking at, it has to understand all these different parts of the
hierarchy in order to be able to make sense of what it's looking at.

So you can start-- the very most basic, we have this thing called morphology. Morphology is the
process of taking a single word and breaking down that word into its components. Some words,
like "the" or "baseball"-- the word by itself stands alone and you don't have to do much to it. But
other words you can think, such as "mustn't", or even "office building", there's context you have
to add to it. You have to separate that into "must not" or whatnot. One thing which I
demonstrate in this slide that you see here, there's a Hebrew word, tievgoshe [ph?]. That
Hebrew word actually means three separate words in English-- "you will meet"-- and you can see
the coloring that the other words also break out into separate ones, and depending on how you're
working in context, what the language is and what the model is, you have to do this for all the
words in a given sentence. Once [ understand what the words themselves mean, then I have to
understand how I'm applying-- which particular definition of that word should be used.

So as you can see, there is the word "bank". That word "bank" actually has multiple different
possible meanings. I can be talking about a bank, the financial institution; I can be talking about
a riverbank; I can be talking about banking an airplane; and I'm sure there's quite a few other
ways that this word can be used. In order for a computer to understand a sentence, it has to be
taught how that should be used in context.

Once I get past understanding now what the word is, then I can get into what we call syntactical
understanding, and I have to understand the syntax of the sentence. Now I'm taking multiple
words, now that [ understand what these words are, and I'm trying to build them into an overall
structure. One example which is commonly given comes from Groucho Marx when he was
playing Captain Spaulding in "Animal Crackers". "One morning I shot an elephant in my
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pajamas. How he got in my pajamas I'll never know." That sentence comes across to audiences
as funny, but to linguists, they actually break that down into the different sentence structures that
it can mean and demonstrate quite clearly how this actually can be interpreted two ways by a
computer. In that context, once the computer has this and sees these two ways, it now can
understand, "Oh, here are the two possible ways that I can put these together."

The last one that's kind of at the level we're going to deal with is the semantic meaning. So now
that I have a sentence and I understand exactly how all the words fit in next to each other and |
understand what the words mean, I have to understand the intent, and that's where we get to
semantics. So even if [ know, "Remind me to buy groceries when I leave the house." Well, |
can understand how the syntax and what "groceries" means relative to just goods, but I have to
know now that actually means create a reminder, and when I do something, there should be an
action. That is the semantic level, and that's a pretty complex task that we're finally able to
reach-- I'm sure many of you listening are familiar with this-- using all the tools that we have at
our disposal on our cell phones and whatnot.

The last two are kind of still in the future. We talk about pragmatics. Pragmatics is nonlocal
meaning. So when I say, "Hey, please pass that down," that sentence may mean something or
may not, but in context it's almost impossible to know what it means without looking at previous
things I've said, the rest of the discussion and whatnot. So in order to really understand the
pragmatics of a sentence, I have to put it in a much larger context. And the last one, which is the
most complex, is discourse, where two people are having a conversation; there's multiple
references that can go not only to previous things said in this conversation but previous
conversations on previous dates, and trying to understand all of the context is a very difficult
task. As it turns out, some of this stuff can also be applied to code as well.

Nathan M. VanHoudnos: Exactly. So here-- hopefully you can see it on your screens. Here is
some JavaScript code that actually Elie wrote for this exact purpose to illustrate how some of
these ideas can work as computers are asked to understand code. At the lowest level, we have
symbols, or the morphology. For those of us who write JavaScript or use JavaScript, you'll know
that curly braces are very important as a reserved word, such as "var" and "function". These are
the lowest level of understanding that you could have about the code, is just the symbols.

Coming up a level, you actually need to understand the lexemes or the context. Here what we've
highlighted are two usages of the word "time". In one case, it's the name of a variable. In the
other, it's a string that talks about a different part of the document where it needs to get a
particular attribute. And so being able to distinguish between time meaning variable and time
being a string is an important distinction in code.

Moving up the hierarchy, we also have syntax problems. Well, we have syntax that we want to
write good, syntactical code--
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Eliezer Kanal: And frequently as programmers, we have syntax problems.
Benjamin P. Cohen: And I have syntax problems.

Nathan M. VanHoudnos: Ooh, I probably shouldn't cover my mic. Break the fifth wall there.
Our fourth wall. Anyway, anyone who's written code has had problems with syntax. Your
computer language will let you know about that pretty quickly. And above syntax, since this is
actually a web application that we have demonstrated, we're actually using APIs interacting with
other applications, so there's also an element of discourse as people write the code, even if it may
be difficult to understand the code at this level.

And so this is a pretty specific example, but it's actually a really wide area of research, as people
have applied natural language processing to code. There's a particularly good survey paper
which we have up for you, "A Survey of Machine Learning for Big Code and Naturalness". It's
sort of an NLP for big code paper. It's an excellent resource for the field. I recommend that all
of you who are interested in this sort of thing go and read it. It covers things like code
generation models, representational models, and other ways to mine patterns. We're going to be
talking about a couple of these things through this webinar.

Eliezer Kanal: And I want to just take a minute to remind everyone who's listening here, we
have chat available. Feel free to ask questions through the chat if you'd like, and we'll be able to
answer that as we're going through. So why don't we see how it is that some of these techniques
are being currently used to understand code.

Benjamin P. Cohen: Sure. Right. So like I said earlier, one of the main reasons that NLP has
taken off is because we're able to find patterns and sources of repetition in data. That means
you're able to predict what's next if you can find those patterns. So just an intuitive example here
is, "For lunch today I had a peanut butter and jelly," blank. Chances are most of us intuitively
answer that with "sandwich", and to kind of spell out the intuition for what's going on there is
you have a vocabulary, a list of words that you can fill in the blank with, and maybe you're
assigning kind of a probability or at least a feeling of how likely a given word is. So "sandwich"
feels very likely.

So this data structure, like a sentence with a blank after it, has its own name in natural language
processing. So these are called n-grams, and N refers to the number of words in the sentence.
So a bigram is just two words. So this is like "jelly" and blank. What you'll notice about this is
that the probability of "sandwich" doesn't appear super high here. So if I just saw this, I would
assume "jelly", maybe "jellyfish" or something like that.
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Nathan M. VanHoudnos: Or "jelly doughnut".
Benjamin P. Cohen: Okay. "Jelly doughnuts".
Eliezer Kanal: It depends on how hungry you are, how close it is lunchtime.

Benjamin P. Cohen: Yeah, now I'm hungry. Right, so you could have "jellyfish" or "jelly
doughnuts". So that's with a 2-gram or a bigram. With a 5-gram, you've got more context, and
so the probability of "doughnut" or "fish" goes down. The probability of "sandwich" goes up.
And in the general case, you can have N words here.

Nathan M. VanHoudnos: Proudly speaking, I was going to say, so you can have sentences of
virtually any length, right?

Benjamin P. Cohen: Right.

Nathan M. VanHoudnos: And no matter how long those sentences are-- it can be as small as,
"I had a peanut butter and jelly sandwich." It can be the entire words of Charles Dickens. But at
a certain point you want to say, "I can't really process all of that stuff." Right? "I want to only
look at a certain amount of text, because I can't fit all of that in the memory of my computer, or I
have other limitations. So let's just look at the last N words, for example." Might choose two,
might choose five, might choose ten, and then you can see, "How can I affect my guess based on
how many I go back?"

Benjamin P. Cohen: Yeah. So, absolutely. Kind of an aside here that's just sort of interesting
to think about is that our language is really complex and this is kind of the reason that you can
catch someone for something like plagiarism. Like the likelihood that two sentences that are
really long and whatnot occur exactly in two places is really low. So in that case, it makes sense
that one is actually copied from the other.

Eliezer Kanal: You're simply looking at the probability that these two sentences would be the
same given all other things that are changing.

Benjamin P. Cohen: Right. Yeah, so these ideas all apply just as well to computer science. So
here we've got a Python code for i in range 10, and one of the differences between natural
language, like English, and source code like Python is just that the vocabulary, the sort of things
that you can fill in the blanks with, is different here.

So first we'll kind of break this into chunks. This is called tokenization, breaking a sentence into
individual vocabulary elements. So here we've got for i in range 10, and my programmer instinct
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is telling me to close the parentheses here, but if you just have a bigram, once again, it's not
obvious what should come next, so maybe a plus or a minus seems likely. Four-grams, it starts
to become more likely that we're going to close the parentheses, and so on.

One thing to note here is that this is language-specific. So in Python, you would close
parentheses or you would follow with a colon, etcetera, but in other languages you could put
other stuff in there. So an N-gram language model is likely to be language-specific even though
it can be implemented for any language.

Eliezer Kanal: And we'll get to this a little bit more later as we talk about how you build a
language model, but that's a very good point, and especially if you consider other English
languages-- French, German, and particularly languages that have different types of punctuation
that may come into play-- when you start talking about-- they call them conlangs, created
languages such as Klingon, which has a whole lot of weird punctuation in it. People think I'm
making a joke, but the language was written by a linguist who understands how languages are
constructed and it would follow all these same rules, so you would be able to do the same sort of
tokenization, understand what comes next. In this context here, Python allows a parenthesis to
be a token, so you would want that to be something you'd think about and you'd be able to build
the same type of language mode.

Benjamin P. Cohen: Right. Nice. Yeah. So we know N-grams work well as just a
fundamental concept in NLP, so now the question is: Do these actually apply to source code? So
the authors of the paper where the term "naturalness hypothesis" was coined, they actually tested
this by grabbing some open-source projects. They grabbed ten open-source Java projects and
they build N-gram models on random subsets of the project, and then what they do is, on kind of
a chunk of that data that's held out to the side, they try and fill in the blanks and then they look at
the real answer and ask, "How surprised is my N-model by what the real answer is?" So that's
kind of how you can interpret the Y-axis loosely here, is how surprised the N-gram model is.

Eliezer Kanal: The lower it is, the less surprised it is.

Benjamin P. Cohen: Yeah. So lower is better. So with just one-- this is a unigram, so there's
no context at all. This is just-- you're just guessing what word is going to be here. With two, this
is like "jelly" blank. With five, "peanut butter and jelly" blank. So it makes sense that there's
pretty much a monotonic increase in performance here, or decrease in surprise, if you will, as N
increases.

The other thing that's interesting about this is they actually compare this to the English language
overall using a standard data set, and what they find is that code appears to actually be much
more repetitive and much more predictable than natural language.



Carnegie Mellon University
Software Engineering Institute

SEIl Webcast Series
Secure Your Code with Al and NLP

Eliezer Kanal, Nathan M. VanHoudnos, Ben Cohen Page 7

Eliezer Kanal: Which makes sense, because the code itself tends to come from very limited
vocabulary. It tends to come from a very well structured environment. We were talking before
about syntax errors that we get. Whenever anyone's trying to program, they're always going to
accidentally insert a colon somewhere where they weren't supposed to, or a comma where they
weren't supposed to, and the language will complain to them, so they'll have to go back and fix
it; whereas when I'm talking here, if I flub a word and accidentally say "sandwich" instead of
saying, "Welcome to the SEL" I can keep on speaking and probably most of the people listening
will understand generally what I'm trying to say. Computers are much more specific.

Nathan M. VanHoudnos: Right, and I'm sure all of us have made those kinds of flubs, which
some of you have caught.

Eliezer Kanal: Exactly.

Benjamin P. Cohen: One thing I actually forgot to mention earlier, speaking of flubs, is that
we're sort of in this age of big code. So with things like SourceForge and GitHub, there's just a
total abundance of code that you can get publicly online. The authors of this paper point out you
only need in the range of 62 thousand lines of code to get this type of performance here. So no
matter how obscure the language is that you use, you can find probably ten times that easily on
GitHub. So, not hard to get this level of performance.

And as a proof of concept, these authors sort of give a real-world example of how this can be
used to benefit programmers. So they took the Eclipse IDE-- so interactive development
environment, which is used for coders. It has a suggestion engine in it, so when you're typing--
you have "for i1 in range" something or other-- it'll give you suggestions as to what to type next.
So to determine if N-grams can actually be useful here, they built an Eclipse plugin that acts on
top of the code suggestion plugin that's already in place, and once again, what they find is that N-
grams give a boost in performance here. So that just kind of hammers the point home, yes, code
is in fact-- it has this property of being natural, and this is a real-world use case for N-grams.

So now we'll kind of pivot and move on from just talking about N-grams to other aspects of
natural language processing.

Nathan M. VanHoudnos: So one of the things that N-grams are good at is they're good at
predicting what comes next, but that doesn't necessarily mean that they have much understanding
of what the meaning of the words are or the code is. So how do we actually solve this meaning
issue, or at least begin to take steps towards it?
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One way, sort of a traditional way to do this, is something called ontology, where you will
actually write down all of the relationships between the words and all of these sorts of things that
let us know that, "Okay, there are three different types of bank that we talked about." Right? All
of this information. The problem with ontology is that they're very difficult to create and they're
very hard to keep up to date once they have been created.

One of the basic problems here is that when we go from the words that we say or the words that
we write down to something that the computer can actually process, the way that we encode that
1s often, as we've shown on the screen, where "hotel" will be a bunch of zeros and then it will
have a one for the hotel column, and "motel" will be a bunch of zeroes and have a one for the
motel column, and the computer, since it's only looking at those two differences of where the one
is, it doesn't know that "hotel" and "motel" are actually very closely related to each other.

They're just as dissimilar as "hotel" and "motel" and "TV". Or I guess "TV" is kind of similar.
Maybe something like "pencil”, right? Those are words that aren't similar.

Eliezer Kanal: You can think of it as essentially any entry in any index, right?
Nathan M. VanHoudnos: Right.

Eliezer Kanal: If I have an index of words, two words might be very similar, but they don't
necessarily mean anything identical. It could be they're similar because they both fall under the
same page, or they're both alphabetically organized, or, for whatever reason, the two acronyms
happens to look similar. But there's no semantic meaning that's actually connecting the two of
them.

Nathan M. VanHoudnos: Thank you for that. I appreciate that. So how might you actually do
this? How might you actually learn this? Before we go to that, I'd like to give an example of
how we just intuitively know about how words work. There's this wonderful quote, "You shall
know a word by the company it keeps." Different words that are similar to each other are used in
similar contexts. One of the techniques that we use for this is something called word2vec, and to
be really specific, something like these two sentences-- "Usually the large-scale factory is
portrayed as a product of capitalism," is one sentence, and "At the magnetron workshop in the
old biscuit factory, Fisk sometimes wore a striped..." And it's the word around the word
"factory" that will represent the word "factory". You will represent a word by its neighbors
because that is a natural way to understand the meaning of a word, as opposed to try and come
up with an index that is very specific, as we were talking about a minute ago.

So how might you do that? Let's think-- instead of words for a second, let's think about maps.
So on the slide what we have is we have Atlanta, Chicago, Denver, all of these different cities in
the United States, and then we have their pairwise distances between them. So we know the
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neighbors, very generally, about each of these cities. Then there's a technique called
multidimensional scaling that you can use that will then figure out where those cities are in
relation to each other, and if you just look at that, you can see that we have a rough
approximation of the shape of the United States just by looking at the pairwise distances of
cities. So if you can know a city's location but the neighbors that it keeps, you can also know a
word's meaning by the neighbors that it keeps.

The way that word2vec does this is it in some sense makes a map of all of the different words
that you have trained it on. So in this example, you can see that we have "man" and "woman",
"uncle" and "aunt", "king" and "queen", and the path to go from "man" to "woman" is the same
as the path from "uncle" to "aunt", and same as the path from "king" to "queen". It's the same, in
some sense, compass bearing that you would take and then distance that you would travel. And
when you have an encoding of the words that obeys those kinds of properties, you can do really
interesting things. For example, you could say, "Okay, how do I pluralize a word?" Well, let's
go in the plural direction, from "king" to "kings" or from "queen" to "queens", or we can even do
more complicated things like analogies such as "king minus man plus woman" would then equal
"queen", and it's these sorts of embeddings that have really moved the field of natural language
processing forward.

If you want to know more about how this works, there are a bunch of different sites where you
can play around with these things. We have them listed for you. There's also a variety of other
papers that have continued to move this direction beyond word2vec to other directions such as
taking into account not just the neighbors of the words in a sentence, but also, for example, its
context in a paragraph and models such as that, and we can also even do this for code, which
we'll talk about in great detail a little bit later.

Eliezer Kanal: Before we jump off that topic, it's worth mentioning, for those of you at home
who are software engineers and know how to play with code, these tools, which you saw the
links in the previous slide-- they're actually publicly available. You can download toolboxes that
enable this functionality, and they're very, very powerful. They can really-- there are many
tutorials online that will teach you how to use these tools and techniques to directly build all
sorts of chat bots, all sorts of textual analysis work, and similar stuff, and it's a very powerful
technique that lets really anyone who understands how to use code and how to interact with these
APIs, they can build some very powerful tools. So it's definitely worth checking out.

So we've talked for a little bit now-- we've kind of referenced indirectly this concept of a
language model, that I have to take code and put it into this representation that the computer will
understand, right? So how do I build a language model? We went through what the computer
has to understand to go into that, but how do I actually build it? Well, we can start looking at
this to see what goes into a language model. So one possible sentence that I might have for
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building an English language model is something as the following on the screen.
"Roethlisberger is a better quarterback than Brady." Arguably a completely true and not at all
controversial sentence.

Nathan M. VanHoudnos: Indeed.

Eliezer Kanal: Of course. That should be said. Software Engineering Institute is in Pittsburgh
and we are proud members of this fine city. But there are other sentences that you might not
come across that wouldn't be present in any of the data sets that you're looking at.

One fairly famous example, which probably breaks this because it's a famous example, is one
called, "Colorless Green Ideas Sleep Furiously." This particular sentence s interesting because it
happens to be syntactically correct, but putting that aside, you'd never see this anywhere. You
would really never see this in any context whatsoever. So because of that, the likelihood--
talking before about how surprised am I to see each of these words next to each other, ideas don't
have color. Something that is colorless doesn't have a color, and then ideas don't sleep, and one
doesn't tend to use the word "furiously" to describe sleep. It's just not-- these things don't go
together. So when you're building a language model, you're simply looking at what is next to
each other.

The same exact concept exists in code. We used this similar example before, but what you see
on the screen now is a very common example of really run-of-the-mill code you'd see in any
language in any codebase. Someone probably has something vaguely like this somewhere in the
codebase. That said, what you see on the right-- actually, I don't even know, stage right, stage
left. What you see on the other side there, the symbols themselves may show up many times.

It's possible to have a var declaration. It's possible to have that little percent sign thing. There's
good reason why you might want to use all those, but you definitely wouldn't see them in
context. Building a language model simply says, "Look at what comes next and then just
remember it," and it's remembering all of these statistical closeness that we're trying to encode in
our language model to say how likely is it to see this next thing. N-grams has one approach;
embeddings has another approach. There are many techniques for doing this, but the end goal is,
"How likely is it to see whatever I have in front of me compared to the stuff ['ve seen elsewhere
in the text, preceding or following?"

It's worth noting that when you're building a language model, it is completely and entirely
dependent on the training data. So if you're going to be training a language model on, for
example, Shakespeare, you can intuitively understand you're not going to be able to replicate
Beyoncé lyrics, simply because those two data sets are completely different. If you're training a
language model on Java code, it's very unlikely you're going to be able to replicate Python or
Fortran or something different, because these are not the types-- the ways that languages are
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constructed are very, very distinct. The practical implication of this is that the training data that
you're using for whatever your application is, is absolutely critical, and if there's a certain things
you're looking for, or a certain very important aspect you want to find in your data that isn't
present in the training set, you're not going to be able to find it using whatever model is built
from that training set. You'll need to get yourself a better data set for that purpose.

So once I have this model and I'm able to build this thing and I have this model that was
constructed from all the symbols I have, the code from all the data sets that I've been able to put
together, what do I then do with it? Well, going back to the very beginning, I understand what I
should be seeing in my data set, because after all, my training data set contained all this stuff,
and I'm looking at my new data set to understand does it look similar to the training one. I can
look to see, are certain things frequent? Is there a certain symbol, function command, or if I'm
using spoken language, word, phrase, that I find very frequently in my training that I don't find in
my test data set? I might ask, "Here's an example of some code that I wrote. How similar is it?
Does this happen frequently?" I might want to say, "Given some non-code input," if I'm working
with code again, maybe I have comments somewhere. Do I see other similar comments next to
other things in my codebase? I've now built this huge statistical model of the data that I have in
front of me and I just want to query and ask as many useful questions as I can from that.

So, once I've done something like that, I can now actually put this to use to try to actually build
something and interrogate my code.

Benjamin P. Cohen: Right. So code2vec is a paper that's done pretty much exactly that. There
are kind of two pieces to the code2vec scholarly work. There's the goal, which like the title
suggests, is to get a vector representation of source code that's useful. Nathan gave the analogy
earlier, in natural language processing you can have things like the vector for king minus the
vector for man plus the vector for woman equals queen, or at least is most similar to queen. The
goal with code2vec is to get vector representations of code that have similar properties. So two
functions or two methods that basically serve the same purpose but are just implemented
differently should intuitively point in kind of the same direction here.

So that's the goal of getting a vector representation of your code. The way that you do that is you
have a task that you train a model to perform. In this case, the task slash motivating goal is to be
able to predict a method's name-- a Java method specifically-- so a method's name given the
body. The name of the method serves as just kind of a rough description of what the function or
method should do, and it's worth noting that this task, predicting the name of the method, is one
of many possible choices, and the task that you choose kind of drives what the embeddings are
that the model learns.

Eliezer Kanal: I'm going to interrupt here for a second, because we actually had a question,
which we had actually taken out of the slides earlier, and I answered next slide on here. But to
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put the question out, Nathan, when you used the MDS example of the cities, it's noted here in the
question, the distance between the cities is very easy to understand. We can understand that
geometrically. It's two-dimensional space-- just how far is it between them. When you're doing
this with words though, the concept of distance is much more complicated.

Nathan M. VanHoudnos: Yes.

Eliezer Kanal: Is there any way that you can explain how we can compute the concept of
distance for words. Iknow you're about to get to this for code, but I wanted to get to this for
words first.

Nathan M. VanHoudnos: Sure. So help me out on this, but off the cuff, what I would say is
that when we had that example where we had "hotel" and a bunch of zeros and a one, and then
"motel" and a bunch of zeros and a one, those are just two vectors. What we'd like is we'd like to
train those vectors, instead of being always just a change of one apart, maybe they're a small
change apart. So the simplest way to do it is to start with a coding that's similar to that, where
the words are essentially arbitrarily far from each other using something like cosine distance, and
then as you look at more and more examples of words, you then move "hotel" and "motel" closer
together and "pen" and "pencil" closer together, until you begin to satisfy these relationships.

Eliezer Kanal: Yeah. To kind of extend upon that a little bit, so when we're dealing with the
concept of distance with cities, it's very easy to visualize. It's in real space, right? So I just go
from here to there, and I can picture this two-dimensional walk. When we're working in two
dimensions, where we're just traveling across the globe, we understand intuitively how to move
and what a distance means. It gets a little more complicated though when you have something
which is a multidimensional data set, and that word seems really complicated, but actually let's
make it really simple. If I'm trying to describe human beings, let me give you an example of
some things I can use to describe them. We have gender, which more and more commonly is
actually a nonbinary feature. We can have height. We can have weight. We can have eye color.
We can have whether or not they have hair. We can have their age. We can have all sorts of
funky descriptions about how that individual can be described. Well, I just listed a whole bunch
of things, and that's not just two. So we can kind of create a concept where this person with all
these features and this person with all these features are similar or dissimilar.

You can imagine someone who is identical in every single feature except they have a different
eye color is more similar to someone than a person who has a completely differing set of
features. One good question which you may ask from that particular example is, "Is that a good
distance function?" It could be that even though everything is very different, those two people
happen to have things very in common. For example, they go to the same university. The even
have different background languages, but they still go to the same university, for example, so
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they may be very similar, which is an example of how you have to choose your distance metric
very carefully.

The example that we chose earlier, talking about the code2vec, it happens to be that the distance
function there that they use relies on an arbitrarily high feature vector. So there's a whole lot of
dimensions. How do they find that? The math gets really complicated when you try to explain
that. Ireally do refer-- the slides that we have here are available and there are a few links on the
slide that Nathan was showing earlier that you can go and-- there's some walkthroughs regarding
how this works. I don't want to try to get into too much detail here, but suffice to say, they take
each of these words, they put them in his arbitrarily high dimensional space, and then, as Nathan
was saying, they'll start to nudge them together. So "hotel" and "motel" will over time get closer
together, whereas "hotel" and "TV" might get a little more separated. And then concepts such as
freedom will end up in a completely different area of this overall space altogether.

Nathan M. VanHoudnos: Right. And just to sort of play with that a little bit, it's been noted
that when you, for example, learn a language model in English text, you'll be even able to get
high-level concepts. There'll be, for example, directions that correspond to gender or to race, and
when you use these things in larger context, you need to make sure that your machine learning
system doesn't, for example, learn different biases that are present in your training data, and all
of that even begins to show up in these embedding models. So these things really do begin to
encode a lot of information about the text that they're presented with, even in ways that you
might not expect.

Eliezer Kanal: So I kind of made that shift to talk about how we can get these distance metrics
in language, and I interrupted as you were about to describe how we can do these distance
metrics in code.

Benjamin P. Cohen: Those are all good points, I think. So bringing this back to code2vec, as
both of these guys pointed out, this is an empirical process. So sort of the distance between two
pieces of code in a vector space that's acquired by statistical model-- that's dependent on the
training data here. So the way code2vec works is you parse the code in some capacity; the code
is then passed through a neural network, and the network is trained to make predictions. It's
trained to predict the name of a method given the method's body. So to the extent that the model
is successful and starts making better and better predictions, the embeddings for the methods
become-- well, they're just moved around in such a way that code that does similar things should
point in similar directions. So it's an empirical process and it's heavily dependent upon the
training data.

So I'll kind of back up a little bit here and explain what an abstract syntax tree is, because this is
what code2vec takes advantage of. Like I said earlier, you need a representation of code or of



Carnegie Mellon University
Software Engineering Institute

SEIl Webcast Series
Secure Your Code with Al and NLP

Eliezer Kanal, Nathan M. VanHoudnos, Ben Cohen Page 14

language that's easy for a machine to work with. So the idea here is to use one of the first layers
of code compilation. So the abstract syntax tree is just another representation of source code.
There's a one-to-one mapping between a code snippet and its AST, abstract syntax tree.

And the way code2vec works is it looks at paths between two variables. One way to intuit ASTs
is that they're kind of similar to sentence diagramming in English, and if you stare at this for a
while it sort of becomes intuitive, but you can look at-- for example, there's variable 1, variable
2. Let me back up one slide.

So this is the abstract syntax tree for a function that just takes two numbers, adds them together,
and squares them. Code2vec will look at paths between two terminal nodes in the tree. So
you've got variable 1, variable 2, and then you've got the path that goes between them. So
code2vec will extract a bunch of paths from a piece of code, and that's going to look something
like this. You've got a bag of paths or a bag of words, and this is a common representation that's
used in NLP.

So each of these words actually gets a vector. Those vectors are used as input to a neural
network. Neural network trains to make predictions about the name of a method. So there are
these parallels to what Nathan said earlier about sort of a plurality access, like going from "king"
to "kings" or "queen" to "queens". There are similar ideas here with code. So login ends up
being most similar-- the vector for login ends up being very similar to the vector for logout, and
so on. So there are a few more of these. There's download, receive, send, and upload. Yeah.

A; Just to pick up, there's actually a few more questions coming up on the chat here, and again,
if you guys have more stuff, feel free to bring it up. One of them here is asking, "How does the
code estimate false-positives and negatives?" So one thing which I think we didn't discuss much
is-- we mentioned this is trying to predict method names. Could you talk a little bit more about
how the code makes sure it's getting the right names?

Benjamin P. Cohen: That's an interesting question. I mean, the notion of false-positive and
false-negative is slightly trickier here because-- so code2vec builds up this vocabulary of a bunch
of method names that it's seen. So this is not a binary classifier where there's a simple notion of
false-positive and true-positive. There's being correct or incorrect for each of these names in the
vocabulary. So there's a false-positive rate for the function sum and for find and so on. Sorry,
what was the question again?

Eliezer Kanal: To build off of that, I guess what I would say is this code is-- we have a method
name that corresponds to a very specific abstract syntax tree, right? And once I have that
abstract syntax tree that describes this method name exactly, I can then look at abstract syntax
trees or ASTs for other functions and see how much do they match, and it won't be a binary
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match, but it will be a generally getting closer or really dissimilar. So when you're trying to
calculate-- what was the word that I was looking at here? False-positives and false-negatives and
all that stuff, how that works-- I don't know, could you just talk a little bit-- how would I do this
when I have this sort of fuzzy logic rather than a very binary answer?

Nathan M. VanHoudnos: So, if [ may, there are sort of two things going on here. One is that if
you are trying to predict the name of a method, in the original code2vec paper what they
essentially say is-- they do some normalization of the method names to make sure that you can at
least get close to it and you don't, for example, worry about capitalization or things like that.

And then they basically judge themselves on either they got it a hundred percent correct, or they
missed it. So as we sort of have looked at this in our own evaluation of this work, we've seen
that it actually does really well at exact matches. Additionally work by those same authors is the
code2seq paper, where they will actually not just try to predict a method name itself, but actually
the parts of the method name, like Upload This File, or something like that. They would break
that to "upload" to "this" and to "file" and predict that sequence in the name. This is a common
thing in Java where they'll use camelCase to separate concepts in the method names. So I hope
that helps to answer the question at least a little bit.

Eliezer Kanal: Sure. There's another question asked earlier which was fantastic, which we
should have gotten to earlier. "Can one gain an understanding of the code slash data structure or
metadata from the compiler? And isn't the compiler doing some of this work as a side-effect?"
So one thing which we didn't really talk much about here--

Benjamin P. Cohen: That's a great question.

Eliezer Kanal: Yeah, we're using all this fancy natural language processing techniques to
understand code security. We have compilers; we have static analyzers; we have dynamic
analysis. We have all these techniques that coders have been using for years. So I guess how do
these two things fit together?

Nathan M. VanHoudneos: Sure. So to just sort of walk through the Allamanis paper, the
Survey for Big Code and Naturalness, there's essentially this hierarchy of how a compiler works,
right? So a compiler will look at the source code; it'll tokenize it; it'll parse it; if you're in
something like C, it'll expand out the macros, do all of that kind of thing. Then from that, it will
build the abstract syntax tree. Then it'll figure out control flow. It'll build an intermediate
representation, and then it will optimize that intermediate representation and then produce some
kind of object code, whether it's a portable executable or whatnot, depending upon what platform
that you're on and what language you're in. Much of the early work was at the beginning of that
compiler chain, where we were worried about just the tokens themselves, in the same way that
much of the early NLP work was worried about just the N-grams and just the tokens themselves.
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As we've sort of matured as a field, we've begun to come closer and closer up that compiler
hierarchy, so now we're at the abstract syntax tree level, in the same way that we do sentence
diagramming and those kinds of things in natural language processing.

Benjamin P. Cohen: I'd say maybe it also depends on the task too. So you just laid out there all
these layers of the compiler toolchain. It depends on what you want to use it for. So if you're
trying to just predict a method's name, maybe the abstract syntax tree is a good level to work
with, but there are other levels that you can work with that may be better or worse depending on
the task.

Nathan M. VanHoudnos: Right, not to mention whether or not you're starting with source code
or you're actually starting with an executable binary file that you then need to infer the source
code from. That's an entirely different direction.

Benjamin P. Cohen: Right. So you could work backwards too.
Nathan M. VanHoudnos: Yes.

Eliezer Kanal: Cool. So now that we've kind of gone through all the stuff that this code can do-
- we've essentially given a 45-minute whirlwind intro into both the field of natural language
processing and how you can use natural language processing to understand code. Now we can
get into a little bit of-- the actual title of the webinar was "Secure Your Code Using Al and
NLP". Let's get into that part.

Nathan M. VanHoudnos: Right. So if you have a machine learning system that can actually
understand a little bit about your code, one of the first things that you might want to do is to just
use that to clean up your code a little bit. And when I mean clean code, I mean things like
coding conventions, right? Code that's written by one organization might be different than code
that's written by a different organization, and if you're a new programmer, you want to be able to
get up to speed on the codebase; you want to make sure that as you write new code, it looks like
the code that your peers are writing so that everyone is on the same page. It makes code easier to
navigate and to maintain. And so there's a whole line of work on learning these kinds of coding
conventions so that we can actually use them to improve our ability to write good and
maintainable and trustworthy software.

The way that these folks did it-- it was, again, Allamanis's group-- is they would take some code
that they wanted to review and then they would change that code in a variety of ways using
essentially some standard techniques, and that would give them a list of candidates for the
possible completions of that code or the possible cleaner versions of that code. And then from
those candidates, they would actually compare them to the language model that they learned



Carnegie Mellon University
Software Engineering Institute

SEIl Webcast Series
Secure Your Code with Al and NLP

Eliezer Kanal, Nathan M. VanHoudnos, Ben Cohen Page 17

from all of the other source code that's written by that company or written in that project, so on
and so forth, and they would score the different candidates and then they would find out what the
suggestions would be. And so, for example, where we have this here, where we have this little
test class and we're trying to figure out a suggestion for the parameter "each". The Eclipse
plugin that they wrote will actually give them some decent suggestions, such as test class, or so
on and so forth. So you actually can use this understanding of code for relatively easy lifts, and
as the field has matured, we've been able to do it for more and more complicated tasks.

Eliezer Kanal: And what the field of software engineering has come to identify is that clean
code is really a prerequisite to well-designed code that doesn't have bugs, for a whole variety of
reasons. If you have code that is written in a way that others can easily read it, if you have code
that is written in a way that others on the team can easily contribute to it, you are much less
likely to introduce new bugs during the development process, and other people who are checking
it are more likely to be able to read it and actually find where you messed something up. But
that said, we may have to worry at some points about how-- what if actual bugs do get
introduced.

So it turns out there's a whole lot of things that we can work on with the techniques that we're
describing here. One of the easiest things which we can try to do is find the bugs themselves.
By applying these techniques, you can actually say, "Is there a bug in my code?" Looking at the
language models and all the other, and we'll discuss some of those as we get forward.

Another one which we can try is have the computer automatically write secure code for me. We
kind of understand at this point what secure code looks like. We've seen a lot of it. Maybe we
can just have the computer create it for us. It's good at automation. Another thing we can have
the computer do is say, "Well, here's code that was written. Let me describe to you what I think
it should be doing." That can be useful just generally to describe it, as the documentation
explains what it is, or, if I read the documentation and it's incorrect, maybe the code is written in
a way that it's not doing what it's supposed to be doing.

And of course, lastly, any good piece of code should most definitely be able to brew me a cup of
coffee. Ifit can't do that, just return it back to the shop or something. But seriously, moving on
with that, we're going to touch on a couple of these right here-- finding the bugs themselves, and
creating good documentation for that.

So, when we're trying to bugs-- to create code-- we don't want to create bugs. We're trying to
create good code.

Nathan M. VanHoudnos: Indeed.
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Eliezer Kanal: Yeah, seriously. Whatever. I believe one of us here has-- you had a sign in
your office, "Creator of Technical Debt," which is--

Nathan M. VanHoudnos: Don't tell that to everybody out here.

Eliezer Kanal: Essentially a way of saying, "This is what we do. We just build code that
probably has problems here."

When you're looking at all these language models and you're looking at all the code that you've
ingested, there's some assumptions you can make. One of the assumptions you can make is that
most of the code that's present in this language model, in the training data you've built your
language model from, that code is probably correct. Why? Because it runs. Right? If it was
mostly incorrect, it probably wouldn't even compile, let alone actually run. Given that, we can
infer from there, if most of the code is right, the bad code is probably pretty rare. Using that
thought process, if you see rare code that looks moderately similar to correct code, it's probable
there's a bug.

We can bring this back to the previous example we had before. If I have a sentence that says,
"peanut butter and jelly" something, most likely it's "sandwich". If someone wrote "peanut
butter and jelly bathtub," that's probably wrong. If someone wrote "peanut butter and jelly
doughnut", that's unexpected, and it's probably worth a second look, because who knows whether
that's right or wrong, but really it doesn't look so correct because I'm used to seeing the word
"sandwich". I should probably check it out. This concept has actually been used by researchers
to build-- the built a tool that does exactly this. It'll look through the historical code you've
already written and try to find areas where it looks almost exactly like other code. Does the tool
know whether it's correct or incorrect? No. But the tool is able to compare every piece of code
to all the other code you have and say, "This one looks really similar but it's a little different."

One of the things which they pull out here is this particular piece of-- or two pieces of code.
They were able to read through all the code in this piece of software called Apache Pig-- it's
actually a very useful tool for data ingest-- and they were able to identify, if you look at the A
section, the part which is in red, there's a word there, "value". That "value", as it's written in this
piece of code-- and if you don't read code, don't worry about it-- that word "value" is written in
such a way that there's a vulnerability, and a malicious actor could cause this code to do
something that the person who wrote it probably didn't intend. Because we were able to look at
other code which looks very similar to it, the tool that these authors put together was able to
autocorrect it down to what you see in B, where it put this two-string function around that
declaration, thereby fixing the same problem.
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There are other techniques that do something fairly similar. The one that we just saw here a
minute ago uses N-grams. It's part of the way that they build their model. There's another
technique called a deep belief network. Deep belief network, as far as we're concerned, we can
call it some form of magic. It looks at all sorts of context around the words and does something
very cool. Read up about it on Wikipedia. But the short of it is, instead of using an N-gram, I
can use this deep belief network, and that will allow me to build out another type of predictor
that can also identify, "Is this code similar to other code? And if so, what should it look like, or
which parts do I think are weird?"

One of the ways they motivate this example of using this DBN-- look at the two sections of code
on the left and on the right. The tokens are identical. The exact same words show up. The only
thing different is the order. Their motivation is that N-grams would have a hard time with this
because the tokens are almost exactly the same. So when they're putting them in order, almost
all the tokens would appear even in the exact same order as shown, but the function is highly
different, and it would be hard for the N-gram case to identify that there's a distinction between
these two pieces of code, whereas the other one can do it very well. The built this whole
technique where they use the same abstract syntax trees that we talked about before, the same
ASTs, and they're able to convert this piece of code, or these two pieces of code, into these
ASTs, use that to identify what's similar to each other, and again, they can predict what is
appropriate, what is inappropriate, simply based on how much does it look like known code.

Nathan M. VanHoudnos: Right. So we've talked a little bit about getting our Al system to do
code completion or to write our code, to write secure code. What about that thing where we
were almost joking about writing documentation? Programmers hate to write documentation.
It's one of the reasons that [ am outed as the creator of technical debt.

Eliezer Kanal: Sorry.

Nathan M. VanHoudnos: It's okay. You are in fact my boss.

Eliezer Kanal: Bad boss.

Nathan M. VanHoudnos: No, it's fine. And so how might we in fact automate the writing of
documentation for us so that we can be lazier coders and actually do more of what we would call
work? So in terms of what you might want to do is you might want to make sure that that system
is accurate; you might want to make sure that it's fast; you might want to make sure that it can be

tied into your commit hook so that it's automated-- all of those kinds of things.

So how do they do this? At a high level, what they're using is they're using this technique called
statistical machine translation. And how does that work? That means that you learn a language
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model for one language and an intermediate representation that that language model can use, and
a language model for another language, and then you can come through one language model to
another intermediate representation through the language model and back out, so that I could, for
example, speak to you in English and then it could get translated into a different language such
as Spanish or Chinese or what have you.

And so the way that this particular system works, to move through this quickly, is that if you
have the Python statement at the top of "if x modulo 5 double equals zero colon" you'll have a
language model encode that, and then you'll have the intermediate representation translate that
into this other language model, and then you'll walk that all the way back down so that you can
get the example of "if X is divisible by 5".

As you might imagine, this is sort of impressive, or at least I'm impressed by this, but it's also
pretty limited. When we talked in the very beginning of the talk, we talked about the different
sort of layers of natural language processing. The language models that we currently work at are
only at the bottom rung of semantics, so that means that as we go from one piece of code up
through a language model and back down through another language model, we have very limited
understanding that's possible, and so the descriptions that are generated are very pedantic and it
misses the big picture. There's a lot more of this work that's described in the review paper, but
I'll pass it to you, Ben, to sort of wrap us up.

Benjamin P. Cohen: Sure. Yeah, we're about at time, so thanks to everyone who tuned in for
joining us. Hope you learned something useful from this. So just to kind of overview what
we've done, we've kind of covered two ideas in natural language processing. We've talked about
N-grams, we've talked about embeddings, and then we've spent a few minutes going over
applications of those techniques in secure coding. So like I said, we're at about time here, but if
you'd like to continue the conversation offline, please feel free to reach out and contact us. So,
yeah.

Eliezer Kanal: Thank you very much.

Nathan M. VanHoudnos: Thank you.
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