C arnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.
Software Engineering Institute

Secure Your Code with Al and NLP

Dr. Eliezer Kanal
Mr. Ben Cohen

Dr. Nathan VanHoudnos

Natural Language Processing

Raw text

Machine-friendly representation

Find patterns, repetition

ﬁﬁ?"—@*“ﬂl;}

* Predictions

» Generate natural sequences
 Summarize

* Translate

» Classify

Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
r

| . e -
Ldrllﬂgle Mellon Univ 9rblty ©2019 Carnegie Mellon University elease and unlimited distribution.

Software Engineering Institute

Code + NLP =7

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R . . . © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

“Naturalness Hypothesis”

Programming languages, in theory, are complex, flexible and powerful, but the programs that
real people actually write are mostly simple and rather repetitive, and thus they have usefully
predictable statistical properties that can be captured in statistical language models and
leveraged for software engineering tasks.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness of software,” in 2012 34th International Conference on Software Engineering (ICSE), 2012, pp. 837-847.

C‘dl‘llﬁgi(’ Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
- ¢ © 2019 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

Natural Language Processing

Raw text

Machine-friendly representation

Find patterns, repetition

ﬁﬁ?"—@*ﬂﬁ

* Predictions

» Generate natural sequences
 Summarize

* Translate

» Classify

Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
re

| . e -
Ldrllegle Mellon Univ 9rblty ©2019 Carnegie Mellon University elease and unlimited distribution.

Software Engineering Institute

What is “representation™?

Discourse

Pragmatics

Semantics

|
Syntax

|
Lexemes
| _ Phonetics — Phonology
Morphology -
Orthography

Ve 3 Trviw, = Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
Ldrllﬂgle MP]]()H LIl.l\ (*I'blty' © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

What is “representation™?

Discourse -
| B

Pragmatics

reaking words to componentg

NX YIA5N

| You will meet
Semantics N ~/

|
Syntax

|
Lexemes
| _ Phonetics — Phonology
Morphology -
Orthography

Ve 3 Trviw, = Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
Ldrllﬂgle MP]]()H LIl.l\ (*I'blty' © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

What is “representation™?

Discourse e _ _ _ R
| Normalize/disambiguate words
Pragmatics .
J | Bank (finance)
_ Bank (river)
Semantics u Bank (airplane))
Syntax
Lexemes
| _ Phonetics — Phonology
Morphology -
Orthography
C‘dl'llf‘/gi(“ Mell()n [;IliV(*I'Sit'V gz%?;e(::;:gi;ag&:ijtr:v':rlsi‘ynd NLP EZIS;—SZIE:JL?Eﬁ;ﬁz?xf&;ﬁ,This material has been approved for public

Software Engineering Institute

What is “representation™?

Discourse

Pragmatics

Semantics

|
Syntax

Lexemes

-~

"

~

Put symbols in a hierarchy

see example....

J

| _ Phonetics — Phonology

Morphology -

Orthography

Carnegie Mellon University Secure Your Code with Al and NLP
- < © 2019 Carnegie Mellon University

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

One morning | shot an elephant in my pajamas. How he got into
my pajamas | don’t know.

Groucho Marx, Animal Crackers, 1930

S
/\ /\
NP NP VP
/\ /\
Pronoun Verb Pronoun VP PP
/\ RN
I shot Det Nominal 1 Verb NP in my pajamas
e N IV
an Nominal PP shot Det Nominal
Noun in my pajamas an Noun
| |
elephant elephant

IO Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which
Captain Spaulding did the shooting in his pajamas.

D. Jurafsky and J. H. Martin, Speech and Language Processing, Third edition, Draft. Self-published, 2018.

Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public

M . e .
& ")
Ldrneble Mellon LIllV(“I'blty ©2019 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

What is “representation™?

Discourse
| / Sentences to domain \
| . .
T ——— (Speaking to phone) “Remind
| me to buy groceries when |
Syntax \ leave the house” J
|
Lexemes
| _ Phonetics — Phonology
Morphology
N
Orthography
Carnegie Mellon University Secure Your Code with Al and NLP EZZZZE:JL?.? rﬁ;AdzIIESI\:IrIIEbI\llJ; OA';]lThis material has been approved for public

. . . © 2019 Carnegie Mellon University
Software Engineering Institute

What is “representation™?

Discourse

Pragmatics

Semantics

|
Syntax

Lexemes

\

Non-local meanings

“‘Please pass that down.”

~

J

| _ Phonetics — Phonology

Morphology -
Orthography

Carnegie Mellon University Secure Your Code with Al and NLP
o . . . © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
r

elease and unlimited distribution.

What is “representation™?

Discourse

Pragmatics

Semantics

|
Syntax

Lexemes

fSequenceS, Conversation

"

~

“| said the black shoes.”
“Oh, black.” y

| _ Phonetics — Phonology

Morphology -
Orthography

Carnegie Mellon University Secure Your Code with Al and NLP
o . . . © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
r

elease and unlimited distribution.

var exerciseTimer = function (exercises) {

1

$("#workouts").hide();

var time
var desc

document.getElementById("time");
document.getElementById("desc");

var i = 0;
var exercise = exercises.workout[i];
var tt = setInterval(function () {

desc.textContent = exercise[0];
time.textContent = exercise[1];

HTML

document.getElementById("time").textContent = exercise[1l].toFixed(®);

exercise[1l] = exercise[1] - 1;

if (exercise[1l] <= 0) {
it++;
exercise = exercises.workout[i];
if (i > exercises.workout.length - 1) {
setTimeout (function (){

clearInterval(tt);
desc.textContent = "You're done!";
time.textContent = "";
$("#workouts").show();
}, 1000);
}
}
}, 1000);
desc.textContent = exercise[0];

time.textContent

exercise[1];

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

Carnegie Mellon University
Software Engineering Institute

Secure Your Code with Al and NLP
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

14

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

var exerciseTimer = function (exercises)|{

1

$("#workouts").hide();

var| t4

.getElementById("time");
var desc = document.getElementBy *

var i = 0;
var exercise = exercises.workout[i];
var tt = setInterval(function (

desc.textContent = exercise[0];
time.textContent = exercise[1];

document.getElementById("time").textConten
exercise[1l] = exercise[1] - 1;

if (exercise[1l] <= 0) {
i++;
exercise = exercises.w

arInterval(tt);
desc.textContent = "You're done!";
time.textContent "
$("#workouts").show();

}, 1000);

}
}, 1000);
desc.textContent
time.textContent

exercise[0];
exercise[1];

[Symbols (morphology)]

exercise[1l].toFixed(®@);

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

Carnegie Mellon University

Secure Your Code with Al and NLP
© 2019 Carnegie Mellon University

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

15

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

var exerciseTimer = function (exercises) {
$("#workouts").hide();

var time = document.getElementById("time");
var desc = ent.getElementById("desc");

var i = 0;
var exercise = exercises.workout[i];
var tt = setInterval(function () {

desc.textContent = exercise[0];
time.textContent = exercise[1];

[Lexeme (context)]

document.getElementById("time").textContent = exercise[1].toFixed(9);

exercise[1l] = exercise[1] - 1;

if (exercise[1] <= 0) {
it++;
exercise = exercises.workout[i];
if (i > exercises.workout.length - 1) {
setTimeout (function (){

clearInterval(tt);
desc.textContent = "You're done!";
time.textContent = "";
$("#workouts").show();
}, 1000);
}
}
}, 1000);

desc.textContent
time.textContent

exercise[0];
exercise[1];

};

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

Carnegie Mellon Universitv Secure Your Code with Al and NLP
R . . ‘. © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

16

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

var exerciseTimer = function (exercises) {
$("#workouts").hide();

var time
var desc

var i = 0;
var exercise = exercises.workout[i];
var tt = setInterval(function () {

desc.textContent

exercise[9];
time.textContent = exercise[1];

Syntax

document.getElementById("time"); .
document.getElementById("desc"); We all know this one

document.getElementById("time").textContent = exercise[1].toFixed(9);

exercise[1] = exercise[1l] - 1;

if (exercise[1] <= @) { ® O Inspector Console [O Debugger {} Style Editor (7)) Performance »» B gl .-
i++;
exercise = exercises.wo tj Y Filter output Persist Logs
if (1> exercises.worko A An iframe which has both allow-scripts and allow-same-origin for its sandbox jsfiddle.net
setTimeout(funct: attribute can remove its sandboxing.
clearInten
desc . textC © Assertion failed: Input argument is not an HTMLInputElement onloadwff.js:71:851028
time.text¢ @ SyntaxError: missing variable name [Learn Morel _display:33:4
$ ("#workou
}, 1000); » var |
}
}
}, 1000);
desc.textContent = exercise[0];
time.textContent = exercise[1];
}s
https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js
Carnf- ie Mf‘ll()l’l University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
/g)) ’ © 2019 Carnegie Mellon University release and unlimited distribution. 1 7

Software Engineering Institute

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

var exerciseTimer = function (exercises) {
$("#workouts").hide();

var time
var desc

document.getElementById("time");
document.getElementById("desc");

var i = 0;
var exercise = exercises.workout[i];
var tt = setInterval(function () {

desc.textContent = exercise[0];
time.textContent = exercise[1];

/Pragmatics, Discourse\

Complex apps
N APIs Y.

document.getElementById("time").textContent = exercise[1].toFixed(9);

exercise[1] = exercise[l] - 1;

if (exercise[1l] <= 0) {
it++;
exercise = exercises.workout[i];
if (i > exercises.workout.length - 1) {
setTimeout (function (){

clearInterval(tt);
desc.textContent = "You're done!";
time.textContent = "";
$("#workouts").show();
}, 1000);
}
}
}, 1000);

desc.textContent
time.textContent

exercise[0];
exercise[1];

};

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

Carnegie Mellon Universitv Secure Your Code with Al and NLP
R . . ‘. © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

18

https://github.com/eykanal/exerciseTimer/blob/master/js/timer.js

NLP for “Big Code”

https://ml4code.github.io/

A Survey of Machine Learning for Big Code and Naturalness

MILTIADIS ALLAMANIS, Microsoft Research
EARL T. BARR, University College London
PREMKUMAR DEVANBU, University of California, Davis

CHARLES SUTTON, University of Edinburgh and The Alan Turing Institute

X
NLP for “Big Code”: prr D PsGN“
b,
« Code-generating models \NO\“‘
* Representational models

» Pattern mining models

M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A Survey of Machine Learning for Big Code and Naturalness,” Sep. 2017.

Carnegie Mellon Universitv Secure Your Code with Al and NLP

[DISTRIBUTION STATEMENT A] This material has been approved for public
© 2019 Carnegie Mellon University release and unlimited distribution. 1 9
Software Engineering Institute

https://ml4code.github.io/

Code generating models — n-grams

“I made a peanut butter and jelly

Bigram: “jelly

P (wp|wy ™) & P (wn|wn—1)

S-gram: “peanut butter and jelly
P (’wn\w?_l) ~ P (wﬂwﬁii)

General case:
P (wn|w?™") = P (wn|w) 5 1)

Carnegie Mellon University
Software Engineering Institute

© 2019 Carnegie Mellon University release and unlimited distribution.

20

n-grams

for i in range(10[?]

Bigram: “1002]”

4-gram: “range(10[?]”

6-gram: “1 range(10[?]”

Carnegie Mellon University Secure Your Code with Al and NLP
. . . © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

21

n-grams — Does it work?

3- or 4-grams optimal
for both natural
language and code

Code 5x more regular
(predictable) than
natural language

2"d study (not shown)
suggests ~62k LOC
needed for code
language model

10

—o— English Cross—entropy
Java Projects Cross—entropy

Log(Perplexity) or Cross—entropy (10-Fold Cross Validation)

Order of N-Grams

Figure 1. Comparison of English cross-entropy versus the code cross-
entropy of 10 Java projects.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness of software,” in
2012 34th International Conference on Software Engineering (ICSE), 2012, pp. 837—

Carnegie Mellon University
Software Engineering Institute

Secure Your Code with Al and NLP
© 2019 Carnegie Mellon University

o4/,

elease and unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public
r

22

n-grams — Does it work?

. = Faw Gain ooy | 2%
Built autocomplete 80 -
augmenter first 2, 6, . 000
or 10 suggestions —

LTE] - a000 &
from ngrams model : :
(10 shown) S AN 5

5 \ ~, - 2000 3

20 —
— 1000
l‘—’—'=::::::\._—- e—e

1.1 T 1T T T T T T T T 1
3 4 5 6 7 8 9 10 11 12 13 14 15

Suggestion Length

(c) Gain using top 10 suggestions.

Figure 4. Suggestion gains from merging n-gram suggestions into those

of Eclipse.
A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness of software,” in 2012 34th
International Conference on Software Engineering (ICSE), 2012, pp. 837-847.
Carne“ie Mell()n [;IliV("I'SitV Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
= ' ° © 2019 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

Embeddings — word2vec

 How do computers represent what a word “means”?

* Ontologies (e.g., WordNet) — list all words & relationships
- tedious (read: expensive) to build
- often miss relationships
- Impossible to keep up-to-date

» Basic problem: discrete representation of words fails

.0 0]
.0 0]

-e.g., “hotel” = [0 @ © .. 0 ©

©160.
“‘motel’=[0 060 ..0100 0.
- Can’t use typical math tools (dot product, cosine similarity)

- Expensive to maintain secondary mapping vectors

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Jan. 2013.

C‘dl‘llﬁgi(’ Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
- . . < © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

Embeddings — word2vec

“You shall know a word by the company it keeps”
(Firth, J. R. 1957:11)

word2vec: represent meaning by frequency of words appearing in
similar context

Usually, the large-scale factory is portrayed as a product of capitalism...

At the magnetron workshop in the old biscuit factory, Fisk sometimes wore a striped...

N /

These words will represent “factory”

Behemoth: A History of the Factory and the Making of the Modern World, by Joshua B. Freeman
The Idea Factory: Bell Labs and the Great Age of American Innovation, by Jon Gertner

Carnegie Mell()n [;IliV(*I'SitV Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
- ¢ T

© 2019 Carnegie Mellon University elease and unlimited distribution.

Software Engineering Institute

25

Embeddings - Maps

o c % 9 5
g = i £ B = £ a o £
= 0 = A u E = = =
8 = 5 - 2 2 5 3 c 5 g 5
= O O T = = =z @I a 24
Atlanta Seattle
. 1 * Mew York
Chicago »
Denver =4 Ghiiagn Washin%tan. DC
Houston
-390
Los Angele
Denver
o »
Migm San Francisco
™ Atlanta
»
New York . |
San
Francisco Los Angeles
400 - -
Seattle
) Houston Miarmi
Washingtol o |.
DC 1,000 500] 500 -1,000

https://www.benfrederickson.com/multidimensional-scaling/

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
© 2019 Carnegie Mellon University release and unlimited distribution.

Software Engineering Institute

https://www.benfrederickson.com/multidimensional-scaling/

Embeddings — word2vec

WOMAN
AUNT QUEENS

MAN / KINGS
UNCLE

QUEEN \ QUEEN
7 7

KING KING

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

T. Mikolov, W. Yih, and G. Zweig, “Linguistic Regularities in Continuous Space Word Representations.” pp. 746—751, 2013.

Somewhat surprisingly, it was found that similarity of word representations goes beyond simple
syntactic regularities. Using a word offset technique where simple algebraic operations are per-
formed on the word vectors, it was shown for example that vector(”King”) - vector(”Man”) + vec-
tor(”Woman”) results in a vector that is closest to the vector representation of the word Queen [20].

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Jan. 2013.

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R . . . © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

27

Embeddings

 How it works: https://jalammar.qithub.io/illustrated-word2vec/

...also a million other sites

 Advances: doc2vec, seqg2seq, humerous others

code2vec — find code vectors!

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning Distributed Representations of Code,” Mar. 2018.

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R i . . < © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

28

https://jalammar.github.io/illustrated-word2vec/
https://medium.com/scaleabout/a-gentle-introduction-to-doc2vec-db3e8c0cce5e
https://google.github.io/seq2seq/

Step back — Language model

“Assign a probability to a sequence of words”

Roethlisberger is a Colorless green ideas

Language: better QB than Brady sleep furiously

Code:

Entirely dependent on training data!

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
N ¥ © 2019 Carnegie Mellon University release and unlimited distribution. 29

Software Engineering Institute

Step back — Language model

Possible uses?

@} o Examine frequency of symbols
Model* built from o Given some code, what is
training codebase “similar’ code?
* Code symbols o Given non-code input (e.g.,
* Other detalils in comments, requirements), what
the dataset code best matches input?

Carnegie Mellon University
Software Engineering Institute

© 2019 Carnegie Mellon University elease and unlimited distribution.

Embeddings — code2vec

code2vec: Learning Distributed Representations of Code

URI ALON, Technion

MEITAL ZILBERSTEIN, Technion
OMER LEVY, Facebook Al Research
ERAN YAHAV, Technion

Grabbed a ton of code from Github (>10k Java code repos)

Motivating question: Can we predict a method name simply by
looking at the method’s code?

Uses tokenized representation of AST (Abstract Syntax Trees) to
describe code

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
© . ' . K . © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

31

Step back (again) — Abstract Syntax Trees @

int sum _square(int v1, int v2)

{

return (v1+v2)*(vl+v2);

Function:
sum_square
J
I
[[]
Parameter: Parameter: .
Operator:
vl v2
J
I
[|
Operator: + Operator: +
J
I I
[| [|
Reference: Reference: Reference: Reference:
vl v2 vl v2
Carnegie Mell()n UIliV(“I'Sity gezg?geczrzggi&ag&r\:vLthr:VgLi\ynd NLP Ei):i;zlz:gﬁﬁlﬁ;ﬁzl?gf&zﬁlThis material has been approved for public 32

Software Engineering Institute

Step back (again) — Abstract Syntax Trees

vl, [(Ref)vl ~ (Op)+ ~ (Op)* ~ (Func) _ (Par)v2], v2

Function:
sum_square
J
I ' 1
of code paths ~ # of Leaves?
Parameter: Parameter: .
Operator:
vl v2
J
I
[1
Operator: + Operator: +
J
I I
I 1 [1
Reference: Reference: Reference: Reference:
vl v2 vl v2
Carnegie M(’,ll()l’l UIliV(‘,I’Sity Secure Your Code with Al and NLP EEE;;F;IS:JL?]Fﬁ;ﬁEIi\:IE&EﬁlThis material has been approved for public 33

. . . © 2019 Carnegie Mellon University
Software Engineering Institute

Step back (again) — Abstract Syntax Trees

sum|square vi1, (PARM_DECL)~(FUNCTION_DECL)_ (PARM DECL),v2

v, (PARM_DECL)"(FUNCTION_DECL)_ (COMPOUND_STMT) (RETURN_STMT)_ (BINARY_OPERATOR:*) (PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v1
v, (PARM_DECL)"(FUNCTION_DECL)_(COMPOUND_STMT) (RETURN_STMT)_ (BINARY_OPERATOR:*) (PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v2
v, (PARM_DECL)"(FUNCTION_DECL)_(COMPOUND_STMT) (RETURN_STMT)_ (BINARY_OPERATOR:*) (PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR), vl
v, (PARM_DECL)"(FUNCTION_DECL)_(COMPOUND_STMT) (RETURN_STMT)_ (BINARY_OPERATOR:*) (PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v2

v2, (PARM_DECL)"(FUNCTION_DECL)_ (PARM_DECL),v1

v2, (PARM_DECL)"(FUNCTION_DECL)_(COMPOUND_STMT) (RETURN_STMT)_ (BINARY_OPERATOR:*) (PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v1
v2, (PARM_DECL)"(FUNCTION_DECL)_(COMPOUND_STMT) (RETURN_STMT)_ (BINARY_OPERATOR:*) (PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v2
v2, (PARM_DECL)"(FUNCTION_DECL)_(COMPOUND_STMT) (RETURN_STMT)_ (BINARY_OPERATOR:*) (PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),vl
v2, (PARM_DECL)"(FUNCTION_DECL)_(COMPOUND_STMT) (RETURN_STMT)_ (BINARY_OPERATOR:*) (PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v2

v1, (DECL_REF_EXPR)”(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v1, (DECL_REF_EXPR)”(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:

*)A(RETURN_STMT)~(COMPOUND_STMT)~ (FUNCTION_DECL) (PARM_DECL),v1
*)A(RETURN_STMT)~(COMPOUND_STMT)~ (FUNCTION_DECL) (PARM_DECL),v2

v1, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)_(UNEXPOSED_EXPR)_(DECL_REF_EXPR),v2

v1, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v1, (DECL_REF_EXPR)”(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v2, (DECL_REF_EXPR)”(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:

*)_(PAREN_EXPR)_(BINARY OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v1l
*)_(PAREN_EXPR)_(BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v2
*)A(RETURN_STMT)~(COMPOUND_STMT)~ (FUNCTION_DECL) (PARM_DECL),v1
*)A(RETURN_STMT)~(COMPOUND_STMT)~ (FUNCTION_DECL) (PARM_DECL),v2

v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)_(UNEXPOSED_EXPR)_(DECL_REF_EXPR),v1

v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v1, (DECL_REF_EXPR)”(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v1, (DECL_REF_EXPR)”(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v1, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v1, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:

*)_(PAREN_EXPR) (BINARY OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v1l
*)_(PAREN_EXPR)_(BINARY OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v2
*)A(RETURN_STMT)~(COMPOUND_STMT)~ (FUNCTION_DECL) (PARM DECL),v1
*)A(RETURN_STMT)~(COMPOUND_STMT)~ (FUNCTION_DECL) (PARM_DECL),v2
*)_(PAREN_EXPR) (BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v1l
*)_(PAREN_EXPR)_(BINARY OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v2

v1, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)~(BINARY_OPERATOR:+)_(UNEXPOSED_EXPR)_(DECL_REF_EXPR),v2

v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:
v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)”(BINARY_OPERATOR:+)~(PAREN_EXPR)"(BINARY_OPERATOR:

*)A(RETURN_STMT)~(COMPOUND_STMT)~ (FUNCTION_DECL) (PARM_DECL),v1
*)A(RETURN_STMT)~(COMPOUND_STMT)~ (FUNCTION_DECL) (PARM_DECL),v2
*)_(PAREN_EXPR)_(BINARY OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v1l
*)_(PAREN_EXPR)_(BINARY_OPERATOR:+) (UNEXPOSED_EXPR) (DECL_REF_EXPR),v2

v2, (DECL_REF_EXPR)”~(UNEXPOSED_EXPR)~(BINARY_OPERATOR:+)_(UNEXPOSED_EXPR)_(DECL_REF_EXPR),v1

These are the “words” for code2vec

Carnegie Mellon University Secure Your Code with Al and NLP
o . . . © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

34

Embeddings — code2vec

MOST SIMILAR ©

login

...Is similar to:

PREDICT

* logOut
authenticate
connect
save

subscribe

COMBINATIONS @

equals and toLower

...combined, are similar to:

PREDICT

equalsIgnoreCase

isUpperCase

equiv

sameAs

isLowerCase

https://code2vec.org/

Cal'negie Mellon Unjversity Secure Your Code with Al and NLP
. . . © 2019 Carnegie Mellon University
Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

35

https://code2vec.org/

Embeddings — code2vec

Carnegie Mellon University
Software Engineering Institute

ANALOGIES ©

receive is to download as...

...is to:

PREDICT

upload

delete

connect

Secure Your Code with Al and NLP
© 2019 Carnegie Mellon University

send

https://code2vec.org/

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

36

https://code2vec.org/

ML for clean code

Coding conventions are critical for medium-to-large teams
* Prevent bugs

« Make code easier to read, navigate, & maintain

Learning Natural Coding Conventions

Miltiadis Allamanis? Earl T. Barrt Christian Bird* Charles Sutton?
fSchool of Informatics 'Dept. of Computer Science *Microsoft Research
University of Edinburgh University College London Microsoft
Edinburgh, EH8 9AB, UK London, UK ~Redmond, WA, USA
{m.allamanis, csutton}@ed.ac.uk e.barr@ucl.ac.uk christian.bird@microsoft.com
Carnegie Mellon University Secure Your Code with Al and NLP EZE;;ZIEI:JJL?I? rﬁ;AdzIIESI\:IrIIEbI\llJ; OA';]lThis material has been approved for public

. . . © 2019 Carnegie Mellon University
Software Engineering Institute

ML for clean code

[UBTic vard TETT T
Printstream oldout = System.out;
System.setOut(new PrintStream(

new GutputStrean() {
#override
public void write(int argd
¥
b
i
try {
TestResult result = junit.textui
assertTrue(result.wasSuccessful {

Code
for Review

Carnegie Mellon University
Software Engineering Institute

BITE veid Eo% TT UETIE Void TET 1
Printstream oldout = System.out; PrintStream oldout = System.out;
r System.setOut(new PrintStream(

YSpubIic void e[y {

PrintStream oldOut = System.out; new QutputStream() {

s Scoring e
T Function

Proposers

}

(rename e o -
. ape new OutputStream() { (TestResult result = junit.textui
|d e nt|f| e I’S, foverride ng ram assertTrue(result.wasSuccessful(

public void write(int argo

add formatting) o language
wr model, SVM) i o D ey |
T —— TestResult result = juntt.textul System.setout(new PrintStrean(
assertTrue|result.wasSuccessful(new 0:;5::5:;:”‘(] {
public void write(int argd
}
i }
Candidates

tey {
TestRasult result = junit.textui
assertTrue(result.wasSuccessful (

Training Corpus
(other code from project)

Top Suggestions

private Test testCaseForClass(Class<?> each) {

if (TestCase.class.isAssignableFrom(each)) { Alternative namings for each
return new TestSuite(each.asSubclass(TestC

} else { testClass (31.8%)
return warning(each.getCanonicalName() + " | klass (25.4%)

} returnType (22.4%)

}

re | Cancel | (ORI
* Constructs a TestSuite from the given array of ¢ —

*

& PAmme Tomdl ol d e T ekl Pl a1

Figure 2: A screenshot of the devstyle Eclipse plugin. The user
has requested suggestion for alternate names of the each argument.

ecure Your Code with Al and NLP T A] This material has been approved for public
© 2019 Carnegie Mellon University release and unlimited distribution. 38

ML for code security

Find bugs
themselves

Automatically write
secure code

Create good
documentation

Al also brews a
good cup of coffee

Carnegie Mellon University
Software Engineering Institute

Secure Your Code with Al and NLP
© 2019 Carnegie Mellon University

[
r

DISTRIBUTION STATEMENT A] This material has been approved for public
elease and unlimited distribution.

39

Find bugs themselves

* Most of your code is (probably) correct
* Buggy code is rare

* If you see rare code similar to common code, it's probably buggy

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
. . . © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

40

Find bugs themselves

Bugram: Bug Detection with N-gram Language Models

Song Wang’, Devin Chollak®, Dana Movshovitz-Attiast, Lin Tan®
“Electrical and Computer Engineering, University of Waterloo, Canada
"Computer Science Department, Carnegie Mellon University, USA

*{song.wang, dchollak, lintan}@uwaterloo.ca, ‘dma@cs.cmu.edu

Token Ranked Token
1 Sequences (N-gram 1 Sequences (Bug
Source Files ——| Tokenization ~ Model | Detect
J L Building J L ctection

Potential Bugs

Figure 3: Overview of Bugram

S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram: bug detection with n-gram language models,” 2016.

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R . . < © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

a1

Carnegie Mellon University
Software Engineering Institute

(a) Method call sequence from a buggy code snippet (ap-
pears once): [isDebugEnabled (), debug (), indent (),
stringify ()]

11f (LOG.isDebugEnabled()) {

2 LOG.debug (indent (depth) +"converting from
3 Pig " + pigType + " " + value +
4 " using " + stringify(schema));

5}

(b) A similar but correct method call sequence (appears
three times): [isDebugEnabled (), debug(), indent (),
toString())]

11f (LOG.isDebugEnabled()) {

2 LOG.debug (indent (depth) +"converting from
3 Pig " + pigType + " " +

toString (value) +
4 " using " + stringify(schema));

5}

Figure 2: A motivating example from the latest version 0.15.0 of the
project Pig. Bugram automatically detected a real bug in (a), which
has been confirmed and fixed by Pig developers after we reported it.

< Apache Pig

laterial has been approved for public

42

Find bugs themselves

Similar to previous work (same authors), Deep Belief Networks instead of n-grams

Motivating example: case where bag-of-words would fail

1 int 1 = 9; 1 int i = 9;
2 |if (i == 9) { 2 | foo();
3 foo () ; 3 |for (i = 0; i < 10; i
4 for (i = 0; i < 10; ++) A
i++) { 4 if (i == 9) {
5 bar () ; 5 bar () ;
§] } 6 }
7 |} 7 |}

Think back... which techniques would work”? Which wouldn’t?

S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features for defect prediction,” in Proceedings of the
38th International Conference on Software Engineering - ICSE “16, 2016, pp. 297-308.

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R . . . © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

Find bugs themselves

: Mappings | | | New instance
| w=Featuress| f,,fs, ... f, | ? }
if statement 1 DBN
I foo() 2 I : | fi,fh ...y | X
| f I I
Source Files | \ or statement 3 | |
bar() 4 - |—FeLture fi, £y .o £y
l | — — I - - I fy, £, ... 1y ‘,
' l * | | fls st i fn ‘,
| i J
(declarations nodes) I Encode I | Training instances Prediction
' (control flow nodes) I I I | (Buggy or Clean)
. |
: method igcation l [if, foo(), for, bar(), ...] Mapping 1,2,3,4,..] :
110! .
[f00(), for, if, bar(), ...] |_> 2 3.1.4
! () ! | 12,3, 1,4, .. |
(b) Encoding vectors of . (d) Performing defect
i ¢) Generating features . L.
(a) Parsing source code AST nodes (c) g prediction

Figure 4: Overview of our proposed DBN-based feature generation and defect prediction

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R i . . < © 2019 Carnegie Mellon University release and unlimited distribution. 44
Software Engineering Institute

Code-to-Text — Automated documentation

Learning to Generate Pseudo-code from Source
Code using Statistical Machine Translation

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata,
Sakriami Sakti, Tomoki Toda, and Satoshi Nakamura
Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{oda.yusuke.on9, fudaba.hiroyuki.ev6, neubig, hata, ssakti, tomoki, s-nakamura} @is.naist.jp

a Accuracy
o Speed

0 Automated
a On-demand

Y. Oda et al., “Learning to Generate Pseudo-Code from Source Code Using Statistical Machine Translation,” in 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2015, pp. 574-584.

Four requirements listed:

C‘dl‘llﬁgi(’ Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
- . . < © 2019 Carnegie Mellon University release and unlimited distribution. 45
Software Engineering Institute

Code-to-Text

“‘SMT” — Statistical Machine Translation
 Find relationships between tokens in different language models

* Propose many sentences, use statistical models to identify “best”

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R . . . © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

46

.

’,,/'/ .) \\
[Tokenization
........ s\) N

i s

—

/ \
/ Phrase pair

{) Phrase
\ Selection > translation
i \ model

Pr(¢m)] g™
r 1;[(¢]s™)
! /
Reordering
model
Pr(al¢)
if || x| isdivisible by 5
L — \)
Sentence
\ generatlon)
i :)
i is d1v131b1e 51t
..= | Language
| Validation ' . model
Pr(t
English: if X is divisible by 5 '(®)

S

Fig. 2. Example of Python to English PBMT pseudo-code generation.

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
)) . . . © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

Code-to-Text

* Very impressive application of NLP to software domain
 Limitations: text is very pedantic, misses “big picture”

* More work described in Allamanis survey paper

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R . . . © 2019 Carnegie Mellon University release and unlimited distribution.
Software Engineering Institute

48

Summary

NLP concepts can apply to code (“naturalness hypothesis”)
Techniques we discussed:

* n-grams, Annotated n-grams

 Embeddings (word2vec, code2vec)
Applications:

 Bug identification

» Code completion

* Documentation generation

Secure Your Code with Al and NLP

Carnegie Mellon University _ _
- < © 2019 Carnegie Mellon University

Software Engineering Institute

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

49

Contact Us

Carnegie Mellon University
Software Engineering Institute
4500 Fifth Avenue

Pittsburgh, PA 15213-2612
412-268-5800

888-201-4479

info@sei.cmu.edu

www.sei.cmu.edu

Carnegie Mellon University
Software Engineering Institute

Secure Your Code with Al and NLP
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

50

mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any
other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0416

Carnegie Mellon University Secure Your Code with Al and NLP [DISTRIBUTION STATEMENT A] This material has been approved for public
R . . . © 2019 Carnegie Mellon University release and unlimited distribution. 51
Software Engineering Institute

	Secure Your Code with AI and NLP
	Natural Language Processing
	Slide Number 3
	“Naturalness Hypothesis”
	Natural Language Processing
	What is “representation”?
	What is “representation”?
	What is “representation”?
	What is “representation”?
	Slide Number 10
	What is “representation”?
	What is “representation”?
	What is “representation”?
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	NLP for “Big Code”
	Code generating models – n-grams
	n-grams
	n-grams – Does it work?
	n-grams – Does it work?
	Embeddings – word2vec
	Embeddings – word2vec
	Embeddings - Maps
	Embeddings – word2vec
	Embeddings
	Step back – Language model
	Step back – Language model
	Embeddings – code2vec
	Step back (again) – Abstract Syntax Trees
	Step back (again) – Abstract Syntax Trees
	Step back (again) – Abstract Syntax Trees
	Embeddings – code2vec
	Embeddings – code2vec
	ML for clean code
	ML for clean code
	ML for code security
	Find bugs themselves
	Find bugs themselves
	Slide Number 42
	Find bugs themselves
	Find bugs themselves
	Code-to-Text – Automated documentation
	Code-to-Text
	Slide Number 47
	Code-to-Text
	Summary
	Contact Us
	Slide Number 51

