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Carnegie Mellon Leads an Ecosystem of
Innovation for Cybersecurity

CMU Campus — Global Research University

» Global research university known for its world-class, interdisciplinary programs in
computer science, machine learning/artificial intelligence, engineering, business, arts,
policy, and science

» Ranked #1 for Computer Science, #1 for Artificial Intelligence, #6 in Engineering
(U.S. News and World Report)

e 1,442 total faculty and 130 research centers

» CylLab, CMU's security and privacy research institute, brings together experts from all schools
across the university

CMU Software Engineering Institute (SEI)

* Founded in 1984 by the DoD as a Federally-Funded Research and Development Center
(FFRDC) focused on software engineering

» Leader in software engineering, cybersecurity, and artificial intelligence research
» Established CERT in 1988
* About $145M annual funding (~$23M DoD Line)

» Critical to the DoD ability to acquire, develop, operate, and sustain software systems that
are innovative, affordable, trustworthy, and enduring (CMU SEI Sponsoring Agreement)
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CERT Division

Founded on a unique combination of experiential understanding of
DoD missions, the cyber warfighter, the operational domain, and
constantly changing technology

Adapts the best science to impact operational missions, increase
the trustworthiness of technology, and develop cyber talent

Partners with DoD, non-DoD agencies, and the private sector
enable CERT to maintain technical depth, attract top talent,
amplify DoD financial investment, reduce the risk to DoD missions,
and scale the research

Strengthens the resilience of critical national functions, increases
the cybersecurity and resilience of DoD systems and Defense
Industrial Base, and develops the cyber capacity of allies and
partners
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Developing a Machine Learning Application
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Data Attacks — Selected Domain Subset
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Data Attacks — Measurements
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Algorithm Attacks — Feature Selection
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Data Attacks — Features
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Data Attacks — Training Data
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Algorithm Attacks — Model Construction
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Data Attacks — Model Testing Data
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Data Attacks — Ground Truth
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Algorithm Attacks — Model
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Data Attack — Loss Measurements
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Deep Neural Network Structure

Deep Meural Metwork
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Aashay Sachdeva, Deep Learning for Computer Vision for the average person, Mar 6, 2017
https://medium.com/diaryofawannapreneur/deep-learning-for-computer-vision-for-the-average-person-861661d8aa61
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Trained Deep Neural Network
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Sergey Golubev, Deep Neural Networks: A Getting Started Tutorial, Part #1, 30 June 2014, https://www.mql5.com/en/blogs/post/203
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Overview of Transferring Learning

|| Layer copied from Teacher
I Layer newly added for classification [ Layer trained by Student
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Input
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Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281
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Overview of Transferring Learning

|| Layer copied from Teacher
I Layer newly added for classification [ Layer trained by Student
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Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281
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Overview of Transferring Learning

|| Layer copied from Teacher
I Layer newly added for classification [ Layer trained by Student
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Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281
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Deep Layer Feature Extraction

|| Layercopied from Teacher 1 Layer trained by Student
S | | E
Teacher Q == =D = =Dece=p - = =
- O
. ] | [ [ 5
Student 3. —t - e [ e (] e D
After Training| £ 3

Used when domains are close
Pro: Cheap training; good accuracy

Con: Adversary has deep knowledge of teacher
Easier to exfiltrate model

Easier to create adversarial input

Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281
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Full model fine tuning

|| Layercopied from Teacher [ Layer trained by Student
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Used when domains are not close

Pro: Better accuracy than deep layer feature extraction
Resilient to teacher-specific attacks

Con: Costly to train

Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281
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Mid-Layer Feature Extraction

|| Layercopied from Teacher 1 Layer trained by Student
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Compromise choice

e Accuracy depends on relationship between student
and teacher domains

« Better resiliency than deep, not as good as full

 More costly to train than deep, cheaper than full

Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao; “With Great Training Comes Great Vulnerability: Practical Attacks
Against Transfer Learning ,” 27th USENIX Security Symposium; Aug 15-17, 2018; pg 1281
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Creating Classifications

Single input

Feature Space

Deep Neural Net
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Adversarial Input

Single
Single input classification

l “Inclusion Attack”
o)
P e > E

“Exclusion Attack”

Feature Space Deep Neural Net Feature Space
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Adding Resiliency

Single
Single input classification

“l/“lnclusion Attack”
° - @
> > Q
® o W’ o

Feature Space Deep Neural Net Feature Space

Exclusion Attack”

o Cutting off spikes mitigates undesired “inclusions”
e Enclosing spikes mitigates undesired “exclusions”
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Training for resilience

Methods to improve model resiliency
» Add adversarial examples in training
 Train with larger domain subset
 Calculate convex hull of classification boundary
» Apply statistical robust regression

All of these methods trade resiliency for accuracy
o Adversarial examples are noisy
» Overfitting creates raggedy boundaries
« Concave boundaries could be legitimate — should be excluded
» Looser boundaries could be legitimate — should be included

Redundancy is an alternative strategy — at a cost

Carnegie Mellon University Threats to Machine Learning Applications [DISTRIBUTION STATEMENT A] Approved for public release
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Coding Hygiene

- = NVD
6\: \/_, :..'.Euto For-:

Commeon Vulnerabilities and Exposures

Search CVE List Download CVE Data Feeds Request CVE IDs Update a CVE
Entry

TOTAL CVE Entries: 139508

Printer-Friendly View

CVE-2020-5215 |Learn more at National Vulnerability Database (NVD)
* CVSS Severity Rating # Fix Information * Vulnerable Software Versions » SCAP
Mappings # CPE Information

In TensorFlow before 1.15.2 and 2.0.1, converting a string (from Python) to a tf.float16 value results in a
segmentation fault in eager mode as the format checks for this use case are only in the graph mode. This issue
can lead to denial of service in inference/training where a malicious attacker can send a data point which contains
a string instead of a tf.floatl6 value. Similar effects can be obtained by manipulating saved models and
checkpoints whereby replacing a scalar tf.float16 value with a scalar string will trigger this issue due to automatic
conversions. This can be easily reproduced by tf.constant("hello”, tf.float16), if eager execution is enabled. This
issue is patched in TensorFlow 1.15.1 and 2.0.1 with this vulnerability patched. TensorFlow 2.1.0 was released
after we fixed the issue, thus it is not affected. Users are encouraged to switch to TensorFlow 1.15.1, 2.0.1 or
2.1.0.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5215

Any of the algorithms
In creating the
application or in the
generated
application could
have coding
weaknesses leading
to vulnerabilities

Mitigation: Good
cyber hygiene

Carnegie Mellon University Threats to Machine Learning Applications
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Software supply chain for assembled software

Machine learning depends on frameworks and data sets
Relatively less is known about the security of these “supplies”

Machine Learning Frameworks

« Pandas

«  Numpy

« Scikit-learn
« Matplotlib

e TensorFlow
« Keras

« Seaborn

 Pytorch & Torch

Data Sources

Kaggle

UCI Machine Learning Repository
Find Datasets

Data.gov

xView

ImageNet

Google’s Open Images
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Machine learning system face training data
supply challenges

Rich supplies of “deep
68 fakes” are readily
34 accessible

Source: https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
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Poor detection of deep fakes

FaceForensic - Cannot reliable
verify that training
data obtained
through a supply
chain

Preconfigured
FaceForensics Benchmark machine learning
(i.e., teacher)
systems provide a

This table lists the benchmark results for the Binary Classification scenario.

Method Info Deepfakes Face2Face FaceSwap NeuralTextures Pristine Total
Xception P 0.964 0.869 0.903 0.807 0.524 0.710 VehICIe to

Andrezs Rassler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, Matthias Mieliner: FaceForensics++: Learning to Detect Manipulated Facial Images. ICCV 2019 d i Stri b u te bad
MesoMet 0873 0.562 0612 0.407 0.726 0.660
Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isso Echizen Mesanst: 2 compact izl video forgery detection network. arkiv

XceptionNet Full Image P 0.745 0.759 0.708 0.733 0.510 0624 tral n I n g d ata

Andreas Rossler. Davide Cozzolino, Luisa Verdoliva, Christian Riess. Justus Thies, Matthias Niefner. FaceForensics++ Leaming to Detect Manipulated Facial Images. ICCV 2018

Bayar and Stamm 0.845 0.737 0.825 0.707 0.462 0616

Belhassen Bayar and Matthew C. Stamm: A desp lsarming spproach to universs] image manipulstion detection using = new convolutional lsy=r, ACM Warkshop on Information Hiding and Multimedia Security

Rahmouni 0.855 0642 0563 0607 0500 0 581

Nicolas Rahmouni, Vincent Mozick, Junichi ¥amagishi, and Isao Echizan: Distinguishing computer graphics from natural images using convelution naursl netwarks. IEEE Workshop on Information Foransics and

Seaury, Source:

Recasting 0.855 0.679 0.738 0.780 0.344 0.552 http://kaldir.vc.in.tum.de/faceforensics_benc
Davide C: lino, Gi i Poggi, and Luisa Verdoliva: Recasting residual-based local descriptors a wohtional neural networks: an application to image forgery detection. ACM Worksh Information Hidi .

a::ﬁm:s;;“:::m ygi, and Luisa Verdoliv: casting residual-based local descriptors as conwohutional neural networ n apphcation to image fos Ection. forkshop on Information Hiding hmark {Index. h (as Of 9/25/19)

Steganalysis Features 0.736 0.737 0.689 0.633 0.340 0.518

Jessica Fridrich and Jan Kodovsky: Rich Models for Steganalysis of Digital images. |IEEE Transactions on information Forensics and Security
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Reducing software supply chain risk factors

Software supply chain risk for a
product needs to be reduced to
acceptable level

Operational

Supplier Product Product Proguct Control

Capability Security Distribution
Supplier follows Delivered or Methods of Product is used in a
practices that updated product transmitting the secure manner
reduce supply is acceptably product to the
chain risks secure purchaser guard

again tampering

Ellison, Alberts, Creel, Dorofee, Woody, “Software Supply Chain Risk Management: From Products to Systems of Systems,” 2010,
https://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_15194.pdf
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Denial of Service Attack
$—[H—F
Remediation: Network hygiene
(https://us-cert.cisa.gov/ncas/tips/ST04-015)
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Integration Points are Typically Weak

Machine learning applications
are part of a system

New operating environments,
l.e., interconnections between
system parts, are a major cause
of vulnerabilities

A Extra-ML parts of the
application are routes to ML
attacks

Clark, Frei, Blaze, Smith, “Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities,” ACSAC

’10 Dec. 6-10, 2010, p. 251-260.”
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Insider Threat

Easy vector for data
attacks
Remediations:

» Organizational
evaluation

» Organizational
processes

* Tools
e Training

https://www.sei.cmu.edu/education-outreach/courses/course.cfm?coursecode=V26
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“Fake News” and Al Untrustworthiness

People ultimately use output from ML systems
Reasoning from ML systems is generally opaque
Parties can amplify potential misgivings

“Through 2021, 80% of line of business (LOB)
leaders will override business decisions made by
Al,” Gartner survey*

Remediations:

e Technical: Improved explanations and
expectations

« Social: Education and experience

Recognize: Machine Learning is Statistics

*Graham Peters, Alan D. Duncan, Gartner Group, “100 Data and Analytics Predictions Through 2024,” March 20, 2020, pg 4
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Outline

Understanding the ML Attack Surface
Understanding Risks of Transfer Learning
Remedies and Limitations

Conventional Threats to Machine Learning
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Ways to Engage with Us

« Download software and tools
 Exploreresearch and capabilities

« Participate in education offerings

« Attend an event

o Search the digital library

 Read the SEI Year in Review

o Collaborate with the SEl on a new project

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue

Pittsburgh, PA 15213-3890
412-268-5800 - Phone
888-201-4479 - Toll-Free
412-268-5758 - Fax
info@sei.cmu.edu - Email
www.sei.cmu.edu - Web

Carnegie Mellon University
Software Engineering Institute
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https://www.sei.cmu.edu/publications/software-tools/index.cfm
https://www.sei.cmu.edu/research-capabilities/index.cfm
https://www.sei.cmu.edu/education-outreach/index.cfm
https://www.sei.cmu.edu/news-events/events/index.cfm
https://resources.sei.cmu.edu/library/
https://resources.sei.cmu.edu/asset_files/AnnualReport/2019_001_001_552485.pdf
https://www.sei.cmu.edu/about/work-with-us/index.cfm
mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/
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