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Predict: benign Predict: malicious

Actual: benign 998940
False discovery rate 0.938

Actual: malicious 90

Predict: benign Predict: malicious

Actual: benign 998860
False discovery rate 0.876

Actual: malicious 10







Predict: benign Predict: malicious

Actual: benign 999759
False discovery rate 0.392

Actual: malicious 9

Predict: benign Predict: malicious

Actual: benign 999825
False discovery rate 0.250

Actual: malicious 75
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Predict: benign Predict: malicious

Actual: benign 999759
Precision 0.608

Actual: malicious 9 Recall 0.940

Predict: benign Predict: malicious

Actual: benign 999825 Precision 0.750

Actual: malicious 75 Recall 0.500




ROC Curve

True Positive Rate

Gigamon

Receiver operating characteristic example
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Cons:
» Requires fine-grained output (“proba”)
« AUC changes not intuitive

Pros:

* Visualize FP and FN tradeoffs

» Allows for focus on false positives
» (Early Retrieval area)
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ROC Curves with Highlighted FPR

Ember Model ROC Curve Ember Model ROC Curve
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Measurement
Takeaway

v

Measure items in a way that is consistent with operational goals.

For security use cases, this may entail a focus on false positives.
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P Explainability

AKA Interpretability
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The black box issue is in the news

= InformationAge Diversity — Events  Newsletter

News Data &Insight Sectors Topics The City & Wall Street  Career

Topics Explainable Al : The

Al & Machine

tearming  margins of
accountability

How much can anyone trust a recommendation from an Al?
Yaroslav Kuflinski, from Iflexion gives an explanation of
Opinion explainable Al

12 November
2018

f]¥)

Image: Information Age

DEFENSE ADVANCED
RESEARCH PROJECTS AGENCY ABOUTUS / OURRESE

Reseu\'Che‘s ‘ Defense Advanced Research Projects Agency » Program Information

Explainable Artificial
Intelligence (XAl)

Mr. David Gunning
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Model Explanations
The Basics

Built-In Feature Ranking
» Valid for whole model only, does not inform for particular instance

feature_importances_ : array of shape = [n_features]
Return the feature importances (the higher, the more important the feature).

Train and Examine Simpler Model

» E.g. Decision tree

pet_window <=0.961
gini=0.5
samples = 4036
value = [2018.0, 2018.0]

record_age <=0.5 cnt_pdns_records <= 21.5
gini=0.314 gini =0.147
samples = 1073 samples = 2963
value = [457.385, 1882.866] value = [1560.615, 135.134]
— l
cnt_pdns_records <= 17.5 pet_window <= 1.0
gini = 0.208 gini =0.421
samples = 671 samples = 485
value = [246.692, 1846 .83] value = [250.397, 108.107]
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Model Explanations
Recent Purpose-built Tools

LIME SHAP
> 2016 > 2017

» Local Interpretable Model-Agnostic Explanations » SHapley Additive exPlanation (SHAP) Values

» An extension of the Shapley values method
. » Uses game theory and notion of fair ‘payouts’
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High

Model Explanations esre 63| —— | e

Feature 618

Endgame SHAP analysis of Ember model Feature 620
Feature 655

Feature 691

Feature 32

Feature 640

Feature 681

Feature 626

Feature 736

Feature 589

Feature value

Feature 95
Feature 632 SE——
Feature 105
Feature 515
Feature 504
Feature 615
Feature 2159
Feature 1060
Feature 613

Image: Endgame blog

SHAP value (impact on model output)

higher = lower

outpud value

0 000681 2 001 x o 4.28 6.001
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Image: Endgame blog
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Model Explanations
Use of trained layers for effective Nearest Neighbor calculations

Use trained penultimate
layer output as instance
vector for distance
calculation

input layer

www.0576pet.cn/view-13285-1.html

0.094 www.0817auto.cn/view-12858701.html
0.144 mythproductionhouse.com/pre-win-error-page-al...
0.158 www.tamizhtube.com/search/label/\xe0\xae\xb5\...

()
© 2018 Gigamon. All rights reserved. 18

Gigamon®



Model Explanations
Images: Basic technique occlusion mapping

Image: Selvaraju et al

(f) Original Image (j) Occlusion Map for ‘Dog’
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Model Explanations

Occlusion-based Analysis of Malicious RTF files
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Explainability

Takeaway

v

Don't settle for solitary outputs (label or single probability) from models.
Provide model context or insight (many methods available) that allows an

analyst to “scan” results.
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p Confidence
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Model probability output

confidence



Most entertaining example of confidence mismatch:
“Passing a Chicken through an MNIST Model” blog entry by Emilien Dupont

Source: https://emiliendupont.github.io/2018/03/14/mnist-chicken/



Confidence Mismatch

Gigamon

p(y[x)

p(y|x)

Expected p(y|x)

0.8
0.6
0.4

0.2

Actual p(y|x)

0.8
0.6
0.4

0.2

76.4%

Image: emiliendupont blog

Source: https://emiliendupont.github.io/2018/03/14/mnist-chicken/
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Image: emiliendupont blog
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Use Autoencoder to identify training distribution

input output <
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Image: emiliendupont blog
G Source: Chervinskii / CC BY-SA 4.0

Source: https://emiliendupont.github.io/2018/03/14/mnist-chicken/
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Finding Out-of-distribution Samples

MNIST Fashion MNIST



Separation of New Distribution (fashion) from Training Distribution

0 fashion
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Recent Work on Uncertainty (Harang et al)

Harang, Richard, and Ethan M. Rudd. "Principled
Uncertainty Estimation for Deep Neural

Networks." arXiv preprint
arXiv:1810.12278 (2018).
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Leverages Real-NVP

» Real Non-Volumetric Preserving Transformations

22 00 02 04 06 08 10

> Dinh, Laurent’ Jascha SOhI_DiCkStein, and Samy Bengio- Medians (paint density-based) Range of 95% credible set (point density-based)
"Density estimation using Real NVP." arXiv preprint

06145

arXiv:1605.08803 (2016). "

05104

L

N,

Captures both class-conditional densities as well
as overall density (and hence overall uncertainty)
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Image: Harang et al
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Recent Work on Uncertainty, Continued (Harang et al)

Improvement in model performance based on removing samples with high uncertainty

(dotted line)

» Especially effective at low false positive rates!

Real-NVP based selection
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Enablers:

PPLs (Probabalistic Programming Languages)

4JPYMC3

Edward

PYRO

Automatic Differentiation Libraries

|

¢ PyTorch theano *® TensorFlow

d.
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Confidence
Takeaway

v

Consider using autoencoding or similar technique to detect (and annotate)
outside-of-training-distribution samples.

Keep an eye on probabilistic programming usability improvements. When
suitable, adopt to improve models and provide valuable context about
uncertainty.
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PE File
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Model Compression
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Objective:

Develop distributed malicious file classifier
that minimizes costs while maintaining overall

Ember accuracy
Constraints:
> hidden fayers » Limit considered costs to: parsing, model
runtime, transport

» Use Ember dataset

» Use standardized model architecture:
DNN, fully connected 3 hidden layers, 256
256 nodes nodes per hidden layer

Gigamon' © 2018 Gigamon. All rights reserved. 37



Technique Selection

» Q-Learning Network
» Important approach: jointly modeling cost and performance

» Implemented Janisch et al 2017, “Classification with Costly
Features using Deep Reinforcement Learning”

» Reinforcement learning approach with DNN as agent “brain”

» Double Deep

V

Image: Deepmind
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DDQN Results

0.

Gigamon®

0.1% decrease in accuracy

< 1/5 the cost

_’
98 / . -
-
J
-
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£
o Single Threshold (Negative)
0.96 - o Dual Threshold (Independent)
o DDQN
0.95
0.94 -
1 I I I 1 I I
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Cost per sample
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Architecture
Takeaway

v

Architectural improvements can apply directly to scaling. If you are
missing data due to heuristic filtering techniques used at the edge,
consider expanding the scope of modeling efforts to the edge.
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