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Predict: benign Predict: malicious

Actual: benign 998940 910

Actual: malicious 90 60

Predict: benign Predict: malicious

Actual: benign 998860 990

Actual: malicious 10 140

False discovery rate 0.938

False discovery rate 0.876
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99.99%
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Predict: benign Predict: malicious

Actual: benign 999759 91

Actual: malicious 9 141

Predict: benign Predict: malicious

Actual: benign 999825 25

Actual: malicious 75 75

False discovery rate 0.392

False discovery rate 0.250
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Cybersecurity-to-Data Science Continuum

Intended Audience
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Overview

Measurement

Explainability

Confidence

Architecture
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Measurement
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Predict: benign Predict: malicious

Actual: benign 999759 91

Actual: malicious 9 141

Predict: benign Predict: malicious

Actual: benign 999825 25

Actual: malicious 75 75

Precision 0.608
Recall 0.940

Precision 0.750
Recall 0.500
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ROC Curve

Cons:
• Requires fine-grained output (“proba”)
• AUC changes not intuitive

Pros:
• Visualize FP and FN tradeoffs
• Allows for focus on false positives

• (Early Retrieval area)

ER Area
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ROC Curves with Highlighted FPR

Full features Reduced features
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Measurement
Takeaway

Measure items in a way that is consistent with operational goals.

For security use cases, this may entail a focus on false positives.
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Explainability
AKA Interpretability
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The black box issue is in the news
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The Basics

Built-In Feature Ranking
Valid for whole model only, does not inform for particular instance

Train and Examine Simpler Model
E.g. Decision tree

Model Explanations
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LIME
2016
Local Interpretable Model-Agnostic Explanations

SHAP
2017
SHapley Additive exPlanation (SHAP) Values
An extension of the Shapley values method
Uses game theory and notion of fair ‘payouts’

Model Explanations
Recent Purpose-built Tools
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Model Explanations
Endgame SHAP analysis of Ember model 

Im
ag

e:
 E

nd
ga

m
e 

bl
og

Image: Endgame blog
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Model Explanations
Use of trained layers for effective Nearest Neighbor calculations 

Use trained penultimate 
layer output as instance 
vector for distance 
calculation

Malicious URI and Nearest Neighbors in Training Set

Distance URI
www.0576pet.cn/view-13285-1.html

0.094 www.0817auto.cn/view-12858701.html

0.144 mythproductionhouse.com/pre-win-error-page-al…

0.158 www.tamizhtube.com/search/label/\xe0\xae\xb5\...
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Model Explanations
Images: Basic technique occlusion mapping
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Model Explanations
Occlusion-based Analysis of Malicious RTF files

Credit: Zeiler et al, 2014
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Explainability
Takeaway

Don’t settle for solitary outputs (label or single probability) from models. 
Provide model context or insight (many methods available) that allows an 
analyst to “scan” results.
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Confidence
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Model probability output
!=

confidence 
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Most entertaining example of confidence mismatch:
“Passing a Chicken through an MNIST Model” blog entry by Emilien Dupont 

Source: https://emiliendupont.github.io/2018/03/14/mnist-chicken/

Image: emiliendupont blog
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Confidence Mismatch

Image: emiliendupont blog
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Source: https://emiliendupont.github.io/2018/03/14/mnist-chicken/
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Use Autoencoder to identify training distribution 

Source: https://emiliendupont.github.io/2018/03/14/mnist-chicken/
Source: Chervinskii / CC BY-SA 4.0

Image: emiliendupont blog
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Finding Out-of-distribution Samples

Source: https://emiliendupont.github.io/2018/03/14/mnist-chicken/
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VAE reconstruction error 

Separation of New Distribution (fashion) from Training Distribution
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Harang, Richard, and Ethan M. Rudd. "Principled 
Uncertainty Estimation for Deep Neural 
Networks." arXiv preprint 
arXiv:1810.12278 (2018).

Leverages Real-NVP
Real Non-Volumetric Preserving Transformations

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. 
"Density estimation using Real NVP." arXiv preprint 
arXiv:1605.08803 (2016).

Captures both class-conditional densities as well 
as overall density (and hence overall uncertainty)

Recent Work on Uncertainty (Harang et al)

Image: Harang et al
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Recent Work on Uncertainty, Continued (Harang et al)
Improvement in model performance based on removing samples with high uncertainty 
(dotted line)

Especially effective at low false positive rates!

Real-NVP based selection Raw NN based selection

Image: Harang et al
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Enablers:

PPLs (Probabalistic Programming Languages)

Automatic Differentiation Libraries
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Confidence
Takeaway

Consider using autoencoding or similar technique to detect (and annotate) 
outside-of-training-distribution samples.

Keep an eye on probabilistic programming usability improvements. When 
suitable, adopt to improve models and provide valuable context about 
uncertainty.



© 2018 Gigamon.  All rights reserved. 3333© 2018 Gigamon.  All rights reserved.

Architecture



© 2018 Gigamon.  All rights reserved. 34

PE File
size < 10MB

&&
!signed

benign
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Improves model size (memory), energy 
usage, speed, and sometimes accuracy

Can replace other models or be integrated in 
multistage

Model Compression
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Objective:
Develop distributed malicious file classifier 
that minimizes costs while maintaining overall 
accuracy

Constraints:
► Limit considered costs to: parsing, model 

runtime, transport

► Use Ember dataset

► Use standardized model architecture: 
DNN, fully connected 3 hidden layers, 256 
nodes per hidden layer

Ember

256 nodes

3 hidden layers



© 2018 Gigamon.  All rights reserved. 38

Q-Learning Network

Important approach: jointly modeling cost and performance

Implemented Janisch et al 2017, “Classification with Costly 

Features using Deep Reinforcement Learning”

Reinforcement learning approach with DNN as agent “brain”

Double Deep 

Technique Selection

Image: Deepmind
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DDQN Results 0.1% decrease in accuracy
< 1/5 the cost
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Architecture
Takeaway

Architectural improvements can apply directly to scaling. If you are 
missing data due to heuristic filtering techniques used at the edge, 
consider expanding the scope of modeling efforts to the edge.
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Review

Measurement

Explainability

Confidence

Architecture
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Questions?
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