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Clustering for Data Reduction 

Instead of examining 5,000 flows over a time 
period… 
 
 
    Examine 12 clusters instead. 
    A 99.76% reduction 
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Previous Work 

• Network Flow Clustering has been used for: 
• Trojan Detection 

• http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6405737&tag=1  

• Detecting Spoofed Flows 
• http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4239059  

• Finding Botnets 
• http://dl.acm.org/citation.cfm?id=1496721 

• Encounter Complexes have been used for: 
• Recovering Spatial Information 

• http://dl.acm.org/citation.cfm?id=1374668  

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6405737&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4239059
http://dl.acm.org/citation.cfm?id=1496721
http://dl.acm.org/citation.cfm?id=1374668
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Encounter Trace 

Defined as: 
 
 
 
For Flow: 
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Encounter Complex 

Two encounters have an edge between them if: 
• They share an endpoint 
• The endtime of one is within δ seconds of each other 
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Encounter Complex  

Example of a complex: 
 
2009/04/20T11:35:19.529 2009/04/20T11:35:28.935 
 10.1.60.203:60515 10.1.60.25:25  
2009/04/20T11:36:28.822 2009/04/20T11:36:28.822 
 10.1.60.203:51727 10.1.60.25:25  
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Encounter Complex 
Example of a complex: 
 
2009/04/20T11:35:19.439 2009/04/20T11:35:19.445 
 10.1.60.203:50398 10.1.60.187:80  
2009/04/20T11:35:19.440 2009/04/20T11:35:19.445 
 10.1.60.187:80 10.1.60.203:50398  
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Not Encounter Complexes 

Example 1:  The time is too far apart 
 

2009/04/20T11:35:19.463 2009/04/20T11:35:19.519 
 10.1.60.203:49592 10.1.60.187:443  
2009/04/20T13:00:13.738 2009/04/20T13:00:13.738 
 10.1.60.187:443 10.1.60.253:56074  
 
Example 2:  No matching trace found 
 

2009/04/20T11:35:19.529 2009/04/20T11:35:28.935 
 10.1.60.203:60515 10.1.60.25:25  
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Visualizing This – Is Useless 
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Analysis  

• Graph clusters 
• Each component within the complex is a set of 

related encounter traces 
• For example:   

• 12 components within one flow when δ=8 

• Degree Analysis 
• What is the encounter with the most connections? 

• Local Clustering Coefficient 
• How dense is my graph 
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Analysis 

Analyzing the largest component created from flow: 
• 4,313 vertices, 636,761 edges, 635,631 cycles 
• This means we have 4,313 encounter traces, or at 

worst case, 8,616 flows 
• Vertex with highest degree (1,130) is found at:  

• 10.2.195.248:48776 10.1.60.25:25 
• Local Clustering Coefficient: 

• Tightly clustered: 0.999994 
• Examining the neighbors, it looks like 

10.2.195.248:48776 is being very friendly 
 
 

 



13 

Analysis  

This is what an HTTPS session can look like: 
 



14 

Analysis 

This is some of the data from the previous graph: 
10.1.60.187:443-10.1.30.5:3710 10.1.60.187:443-
10.1.30.5:3712  
10.1.60.187:443-10.1.30.5:3710 10.1.30.5:3710-
10.1.60.187:443  
10.1.60.187:443-10.1.30.5:3710 10.1.30.5:3712-
10.1.60.187:443  
10.1.60.187:443-10.1.30.5:3712 10.1.60.187:443-
10.1.30.5:3710  
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Analysis 

 δ makes a difference 
• When δ = 1, the graph has 60 components 
• When δ = 8, the graph has 12 components 
• G1 ⊆ G8 

 
 Increasing δ pulls in more edges 



16 

Analysis  

Alternative Analysis: 
 What about those edges which didn’t get an 
edge in the graph? 
 
In general, these are one-sided conversations.   
 
For example, this appears to be an unanswered ping: 
2009/04/21T13:57:21.541 2009/04/21T13:58:02.968 
  10.1.60.187:0 10.1.100.8:0  
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Future Work 

• Graph fingerprinting 
• Create a graph that looks like a connection with 

http://www.cnn.com 
• Allow graph edit distance or Jaccard distance to 

determine similarity with the fingerprint 
• Add size of flow as an edge weight to the graphs 
• Multigraphs 
• Time Series Analysis with Graphs 
• A SiLK plugin 

http://www.cnn.com/
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Questions/comments? 
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