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Abstract

Our society’s growing dependence on software
makes the need for effective software assurance
imperative. Motivation to address software assurance
requires, at a minimum, an understanding of what to
do, how to go about it, and why it is needed. Two key
foundation elements are principles for software
assurance and a curriculum to educate those who must
address this need. This paper highlights efforts
underway to address both of these elements.

1. Defects Are Not an Option in Today’s
World

Computers are a vital part of our culture. In fact, it
might be said that computers and the software that runs
on them epitomize our modern society. Consider that
30 years ago you couldn’t shop, bank, buy stocks
online, play games or interact with people on a mobile
device. Now all of that is possible, and the new
opportunities that technology creates seem to multiply
at an impossibly fast rate. Consequently, it is critically
important to be able to trust the software that makes
our way of life possible. Unfortunately, however,
“commonly used software engineering practices permit
dangerous defects that let attackers compromise
millions of computers every year” [1]. Most of these
defects are traceable to programming or design flaws,
and they do not have to be actively exploited to be
considered a threat [1]-[3]. These defects result from
the fact that “commercial software engineering lacks
the rigorous controls needed to [ensure defect free]
products at acceptable cost” [1].

In fiscal terms, the exploitation of software defects
costs the U.S. economy an average of $60 billion
dollars annually [4]. Worse, it is estimated that “in the
future, the Nation may [be at even greater risk] as
adversaries—both foreign and domestic—become
increasingly sophisticated in their ability to insert
malicious code into critical software systems” [3].
Given that situation, the most significant concern is
that the exploitation of a software flaw in a basic
infrastructure  component such as power or
communication would lead to a significant national
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disaster [5]. The Critical Infrastructure Taskforce sums
up such an event: “The nation’s economy is
increasingly dependent on cyberspace. This has
introduced unknown interdependencies and single
points of failure. A digital disaster strikes some
enterprise every day, [and] infrastructure disruptions
have cascading impacts, multiplying their cyber and
physical effects” [5].

Given the scope and potential impact of software
defects, it is important to ensure the workforce follows
proper software development and sustainment
practices. The problem is that there is currently no
authoritative point of reference to define what those
practices are [3]. For that reason, in 2005 the U.S.
Department of Homeland Security (DHS) created a
group to define a common body of knowledge (CBK)
for secure software assurance. The goal of the CBK
was to itemize all the activities that might be involved
in producing secure code. The aim was to then have the
CBK serve as the basis for “defining workforce needs
and competencies, leveraging sound practices, and
guiding curriculum development for education and
training relevant to software assurance” [3].

Nonetheless, the primary criticism of the CBK has
been that, although it provides close to 300 pages of
recommendations about what needs to be done, it
provides very little specific information about why
those practices are required and how they might apply
in a range of situations. That is mainly because the goal
of the CBK was to help the government ensure that it
was getting secure software [6].

Subsequently, DHS enlisted the Carnegie Mellon
Software Engineering Institute (SEI) to develop a
curriculum for a Master of Software Assurance
(MSwA) degree program [7]. The MSwA team drew
on the CBK and other sources to develop a curriculum
body of knowledge and associated outcomes.

In parallel with this effort, several MSwA
curriculum authors pointed out the need for a seminal
set of principles for secure software assurance [6], [8]-
[9]. That need is what motivated a joint effort by a
team at the SEI’s CERT® Program and the Software
Engineering Program at Oxford University, UK. This
research program was instituted in the fall of 2010 and
has produced a coherent set of principles based on the
efforts of those two groups. These principles are first
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reported here in section 2. As part of this effort, we
created a mapping between the principles and the
MSwA curriculum outcomes in order to validate our
thinking (see section 5).

2. Historical Principles for Information
Protection

Much of the information protection in place today
is based on principles established by Saltzer and
Schroeder in their paper titled “The Protection of
Information in Computer Systems,” which appeared in
Communications of the ACM in 1974 [10]. They
defined security as “techniques that control who may
use or modify the computer or the information
contained in it” and described the three main categories
of concern: confidentiality, integrity and availability
(CIA). Their proposed design principles that focus on
protection mechanisms to “guide the design and
contribute to an implementation without security
flaws” [10] are still taught in today’s classrooms. They
established eight principles for security in software
design and development [10]:

1. “Economy of mechanism: Keep the design as
simple and small as possible.

2. Fail-safe defaults: Base access decisions on
permission rather than exclusion.

3. Complete mediation: Every access to every object
must be checked for authority.

4. Open design: The design should not be secret.
The mechanisms should not depend on the
ignorance of potential attackers, but rather on the
possession of specific, and more easily protected,
keys or passwords.

5. Separation of privilege:  Where feasible, a
protection mechanism that requires two keys to
unlock it is more robust and flexible than one that
allows access to the presenter of only a single key.

6. Least privilege: Every program and every user of
the system should operate using the least set of
privileges necessary to complete the job.

7. Least common mechanism: Minimize the amount
of mechanism common to more than one user and
depended on by all users.

8. Psychological acceptability: It is essential that the
human interface be designed for ease of use, so
that users routinely and automatically apply the
protection mechanisms correctly.”

Time has shown the value and utility in these
principles; however, it is appropriate to consider that
these were developed prior to the Morris worm that
generated a massive denial of service by infecting over
6000 UNIX machines on November 2, 1988 [11]. To
provide a technology context, consider that the IBM

System 360 was in use from 1964-1978, and the IBM
System 370 came on the market in 1972. An advanced
operating system MVS (Multiple Virtual Storage) was
released in March 1974 [12].

These principles were assembled prior to the
identification of the more than 46500 software
vulnerabilities and exposures that are currently
exploitable in today’s software products as described in
the Common Vulnerabilities and Exposures (CVE)
database at http://cve.mitre.org/. When these
principles were developed, “buffer overflow,”
“malicious code,” “cross-site scripting” and “zero-day
vulnerabilities” were not part of the everyday
vocabulary of operational software support personnel.
Patches were carefully tested and scheduled to
minimize operational disruption instead of pushed into
operation to minimize attack vectors.

While these principles are still usable today in
consideration of security within an individual piece of
technology, they are no longer sufficient to address the
complexity and sophistication of the environment
within which that component must operate. \We must
broaden our horizon to consider the large scale, highly
networked, software dependent systems upon which
our entire critical infrastructure depends, from phones,
power and water to industries such as banking,
medicine and retail.

Software assurance is the commonly used term to
describe this broader context. The Committee on
National Security Systems (CNSS) [13] defines
software assurance as follows:

“Software assurance (SwA) is the level of
confidence that software is free from
vulnerabilities, either intentionally designed
into the software or accidentally inserted at
any time during its life cycle, and that the
software functions in the intended manner.”

For purposes of developing the curriculum model for
software assurance in the Master of Software
Assurance Reference Curriculum report [7], the CNSS
definition has been expanded as follows:

“Application of technologies and processes
to achieve a required level of confidence
that software systems and services function
in the intended manner, are free from
accidental or intentional vulnerabilities,
provide security capabilities appropriate to
the threat environment, and recover from
intrusions and failures.”

The expanded definition emphasizes the
importance of both technologies and processes in
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software  assurance, observes that computing
capabilities may be acquired through services as well
as new development, recognizes that security
capabilities must be appropriate to the expected threat
environment and identifies recovery from intrusions
and failures as an important capability for
organizational continuity and survival.

3. Principles for Software Assurance

There are vast lists of practices and procedures that
describe what should be done to address software
assurance'. There are also an equal number of
complaints that effective assurance is not being
addressed in today’s software. We posit that some of
the inaction stems from a general lack of understanding
about why this additional work is needed. In our
scrutiny of the wide range of materials published, the
case for why to focus on software assurance, a question
any two-year-old would ask, has not yet been
addressed. We propose the following seven principles
in response:

1. Risk: A perception of risk drives assurance
decisions.  Organizations  without  effective
software assurance perceive risks based on
successful attacks to software and systems and
usually respond reactively. They may implement
assurance choices such as policies, practices, tools
and restrictions based on their perception of the
threat of a similar attack and the expected impact
should that threat be realized. Organizations can
incorrectly perceive risk when they do not
understand their threats and impacts. Effective
software assurance requires that risk knowledge be
shared among all stakeholders and technology
participants; however, too frequently, risk
information is considered highly sensitive and is
not shared, resulting in uninformed organizations
making poor risk choices.

2. Interactions: Highly connected systems like the
Internet require alignment of risk across all
stakeholders and all interconnected technology
elements; otherwise, critical threats will be missed
or ignored at different points in the interactions. It
is no longer sufficient only to consider highly
critical components when everything is highly
interconnected. Interactions occur at many
technology levels (e.g., network, security
appliances, architecture, applications, data storage,
etc.) and are supported by a wide range of roles.

! For a starting point see https://buildsecurityin.us-
cert.gov/swa/.

Protections can be applied at each of these points
and may conflict if not well orchestrated. Because
of interactions, effective assurance requires that all
levels and roles consistently recognize and
respond to risk.

Trusted Dependencies: Because of the wide use
of supply chains for software, assurance of an
integrated product depends on other people’s
assurance decisions and the level of trust placed on
these dependencies. The integrated software
inherits all of the assurance limitations of each
interacting component. In addition, unless specific
restrictions and controls are in place, every
operational component including infrastructure,
security software and other applications can be
affected by the assurance of every other
component. There is a risk each time an
organization must depend on others’ assurance
decisions. Organizations should decide how much
trust they place in dependencies based on a
realistic assessment of the threats, impacts and
opportunities represented by an interaction.
Dependencies are not static, and trust relationships
should be regularly reviewed to identify changes
that warrant reconsideration.  The following
examples describe assurance losses resulting from
dependencies:
= Defects in standardized pieces  of
infrastructure (such as operating systems,
development platforms, firewalls, routers,
etc.) can serve as widely available threat entry
points for applications.
= Using many standardized software tools to
build technology establishes a dependency for
the assurance of the resulting software
product. Vulnerabilities can be introduced
into software products by the tool builders.

Attacker: A broad community of attackers with
growing technology capabilities are able to
compromise the confidentiality, integrity and
availability of an organization’s technology assets.
There are no perfect protections against attacks,
and the attacker profile is constantly changing.
The attacker will use technology, processes,
standards and practices to craft a compromise
(known as a socio-technical responses). Attacks
are crafted to take advantage of the ways we
normally use technology or designed to contrive
exceptional situations where defenses are
circumvented.

Coordination and Education: Assurance requires
effective coordination among all technology
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participants. Protection must be applied broadly
across the people, processes and technology in an
organization because the attacker will take
advantage of all possible entry points. Authority
and responsibility for assurance must be clearly
established at an appropriate level in the
organization to ensure the organization effectively
participates in software assurance. This assumes
that all participants know about assurance, and that
is not usually a reality. There is much to be done
to educate people on software assurance.

Well Planned and Dynamic: Assurance must
represent a balance among  governance,
construction and operation of software and
systems and is highly sensitive to changes in each
of these areas. An adaptive response is required
for assurance because the applications,
interconnections, operational usage and threats are
always changing. Assurance is not a once-and-
done activity. It must continue beyond the initial
operational implementation through operational
sustainment. Assurance cannot be added later; it
must be built to the level of acceptable assurance
that organizations need. No one has resources to
redesign systems every time the threats change,
and assurance cannot be readily adjusted upward
after the fact.

Measurable: A means to measure and audit
overall assurance must be built in.  That which is
not measured cannot be managed. Each
stakeholder or technology user will address only
the assurance for which they are held accountable.
Assurance will not compete successfully with
other competing needs unless results are
monitored and measured. All elements of the
socio-technical environment, including practices,
processes and procedures, must be tied together to
evaluate operational assurance.  Organizations
with more successful assurance measures react and
recover faster, learn from their reactive responses
and that of others and are more vigilant in
anticipating and detecting attacks. Defects per
lines of code, a common development measure,
may be useful for code quality but are not
sufficient evidence for overall assurance because
they provide no perspective on how that code
behaves in an operational context. Both focused
and systemic measures are needed to ensure the
components are engineered with sound security
and the interaction among components establishes
effective assurance.

Risk management has been widely studied. There
are several organizational and cultural challenges that
contribute to how an organization addresses risk.
Because of the importance of risk in software
assurance, these challenges will contribute to a
successful assurance outcome [14]:

e Open communication: Risks cannot be addressed
if they are not communicated to and understood by
the decision makers. Evaluation activities must be
built upon collaborative approaches that encourage
the exchange of security and risk information
among all levels of the organization.

e Culture of sharing: When participants have a
culture of sharing, there is a greater likelihood that
information important to assurance will be
effectively communicated; when this sharing
includes formal documentation, there is a greater
likelihood that the information will persist.

e Traditional boundaries are potential barriers to
communication but not to risk: Organizational,
system, contract and classification boundaries may
inhibit critical communication of risks, threats,
impacts, measures, etc. critical to software
assurance.

e Complexity increases the challenges for assurance
and must be managed through the application of
effective software engineering.

4. Master of Software Assurance
Curriculum

To address the disconnect between research,
education and practical development of assured
software, the DHS National Cyber Security Division
(NCSD) enlisted the SEI to develop a curriculum for a
Master of Software Assurance degree program and
define transition strategies for future implementation.
As noted in the curriculum report, the need for a
master’s level program in this discipline has been
growing for years [7]:

e “Astudy by the nonpartisan Partnership for Public
Service points out that, “The pipeline of new talent
[with the skills to ensure the security of software
systems] is inadequate. . . . only 40 percent of
CIOs [chief information officers], CISOs [chief
information security officers] and IT [information
technology] hiring managers are satisfied or very
satisfied with the quality of applicants applying for
federal cybersecurity jobs, and only 30 percent are
satisfied or very satisfied with the number of
qualified candidates who are applying’” [15].



e “The need for cybersecurity education was
emphasized in the New York Times when Dr.
Nasir Memon, a professor at the Polytechnic
Institute of New York University, was quoted as
saying, ‘There is a huge demand, and a lot more
schools have created programs, but to be honest,
we’re still not producing enough students’” [16].

e “In discussions with industry and government
representatives, we have found that the need for
more capacity in cybersecurity continues to grow.
Anecdotal feedback from the MSwA curriculum
development team members’ own students
indicates that even a single course with a
cybersecurity focus enhances their positioning in
the job market. They felt that they were given job
offers they would not have received otherwise”

[71.

Another aspect of the need for cybersecurity
education occurs in educational institutions. The
curriculum authors point out, based on their collective
experience in software engineering education, that it
can be very difficult to start a new program or track
from scratch. The authors offer assistance to those
organizations and faculty members who wish to
undertake such an endeavor. The objective is to
support their needs, while recognizing that there are a
variety of implementation strategies. Each participant
must select what works best within their institution and
for their students.

While information security is important, academic
programs in information security typically focus on
system administrator activities for operational systems,
whereas the focus in the MSwA curriculum was on
systems under development. Software engineering
provides much excellent foundational material, and all
the curriculum development team members have a
software engineering background. However, the
authors recognized that development of assured
software needs to go beyond good software
engineering practice, and, indeed, the resulting
curriculum reflects this.

4.1. Master of Software Assurance Education
Outcomes

The Master of Software Assurance (MSwA)
Reference Curriculum report recommends a core body
of knowledge (CBK) that includes seven outcome
areas. Brief descriptions for each outcome taken from
the report follow. The MSwA CBK and more detailed
descriptions of the outcomes can be found in the
curriculum report [7].

Outcome 1. Assurance Across Life Cycles:
Graduates will have the ability to incorporate assurance
technologies and methods into life-cycle processes and
development models for new or evolutionary system
development, and for system or service acquisition.

Outcome 2. Risk Management: Graduates will have
the ability to perform risk analysis, tradeoff
assessment, and prioritization of security measures.

Outcome 3. Assurance Assessment: Graduates will
have the ability to analyze and validate the
effectiveness of assurance operations and create
auditable evidence of security measures.

Outcome 4. Assurance Management: Graduates will
have the ability to make a business case for software
assurance, lead assurance efforts, understand standards,
comply with regulations, plan for business continuity,
and keep current in security technologies.

Outcome 5. System Security Assurance: Graduates
will have the ability to incorporate effective security
technologies and methods into new and existing
systems.

Outcome 6. System Functionality Assurance:
Graduates will have the ability to verify new and
existing software system functionality for conformance
to requirements and absence of malicious content.

Outcome 7. System Operational Assurance:
Graduates will have the ability to monitor and assess
system operational security and respond to new threats.

5. Mapping MSwA Curriculum Outcomes
to Principles

For education in software assurance to be effective,
it must support the principles that have been identified
as critical to effective software assurance. This section
describes how the curriculum outcomes effectively
map to the principles for software assurance described
in section 2. It also validates the completeness of the
principles. It is useful to note that the principles and
curriculum model were developed independently and
the mapping was done afterward.

Principle 1. Risk

Outcome 2. Risk Management
Principle 2. Interactions

Outcome 2. Risk Management
Principle 3. Trusted Dependencies

Outcome 2. Risk Management
Principle 4. Attacker



Outcome 5. System Security Assurance
Outcome 6. System Functionality
Outcome 7. System Operational Assurance
Principle 5. Everyone is involved
Outcome 4. Assurance Management
Outcome 5. System Security Assurance
Principle 6. Assurance must be dynamic
Outcome 1. Assurance Across Life Cycles
Outcome 5. System Security Assurance
Outcome 6. System Functionality Assurance
Outcome 7. System Operational Assurance
Principle 7. Assurance must be measurable
Outcome 3. Assurance Assessment

6. Conclusions and Future Plans

The principles will help everyone involved in
software assurance understand its importance and
value. Communicating them across the software
development community is a critical next step.
Identifying memory aids similar to “CIA” will make
this task easier and support longer retention.

Both the Association of Computing Machinery and
the IEEE Computer Society have recognized the
MSwA curriculum as appropriate for a master’s
program in software assurance. Efforts are underway
to develop courseware for faculty to enhance adoption
of the curriculum. In addition, the team has assembled
research and sample course outlines that can be used at
the undergraduate and community college levels to
introduce topics related to software assurance earlier in
the educational process. The undergraduate material
was published [17] with the MSwWA curriculum [7], and
the community college material was published in fall
2011 [18]. Software engineering practitioners should
urge their alma maters to consider incorporating this
program; faculty interested in developing this master’s
program should contact us for further information and
assistance.
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