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UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
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trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.
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Motivation

Clarify timing relationships

Formalize analysis semantics

« Clearer discussions
« Enhance automation & frameworks
- Combining analyses

Avoid over-specification of timing
Support reasoning about analysis tasks
Access temporal logic methods
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Temporal Logic

Logic with explicit inclusion of time
Classically, first-order logic, could be any logic form

Temporal interpretation: Instantiating circumstances
« Linear time with rollback on contradiction
- Branching time with branch termination on contradiction
- Advantage to linear: simpler structure, no worry over paths
- Advantage to branching: can express path-related conditions
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Temporal Logic Operators

Next(t,p) — p Is true in the instant after t

Global(p) — p Is true independent of time

Following(t, p) — p Is true at some instant after t
until(t,p,q) — p Is true at each instant after t until g is true
Forall (p) — p Is true along all paths

Exists (p) — p Is true along at least one path
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Adaptation to Flow

Description first, then reasoning
lterative semantics — suitable for filter-like processing

Specific semantics:
- 5-tuple
- Ordinal time (inexact comparisons)
- Related flows
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Adapted semantics

R(f,,f,) relation — flow-flow connection

p(f,...), q(f,...) — logic predicates on flow
records/fields

Enable reasoning using Horn clause resolution and
backtracking
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Temporal Operators for Flow

Globally:
G(p): forall(R(f,f’) — p(f) and p(f’))

Next:

N(f,f): iff R(f,f') and f'.stime > f.stime and
does not exists (
R(f,f’) and f.stime > f’.stime >f.stime)

N*(f,f'): transitive relation on N

X(f,p): forall(N(f,f') —p(Ff))
Following:

F(f,p): exists(N*(f,f') and p(f'))
until:

U(f,p,q):

exists (N*(f,f’) and q(f”),
forall (N*(f,f") and f”.stime>f".stime — p(f’) and not q(f’)))
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Descriptive Temporal Example

Spam(s,f):
R(f,f'): f.sip = f'.sip = s and s not on whitelist

If and only if
{f', Following(f,f’,f’.stime < f.stime+5min and
f.dport=email)}|>15 and

(', Following(f.f, f'.stime < f.stime+5min and
f.dport=email)}| 2
|{f', Following(f,f’, f'.stime < f.stime+5min)}| * 0.1
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Implementation

Use temporal logic to express analysis criteria
Prolog-based (GNU-Prolog)

Logic programming, incorporating time in resolution

Initial prototype to refine semantics

Construct interface to analysis tools (plugin)
Python-based (PySILK)

Declarative programming, incorporate limited
resolution mechanism

Secondary prototype to demonstrate applicability

Eventually construct reasoning rules for analysis
relationships or proof
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Conclusions

Temporal logic adaptation of flow analysis offers
opportunity to encompass large literature of pre-
existing methods

Formalization of time relationships offers opportunity
to improve flow analysis methods

More formal reasoning on flow analysis?

CERT ‘ :‘-_;= Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 12



