_ N

N CERT

_
A Temporal Logic For
_ Network Flow Analysis

Tim Shimeall

- tjs@cert.org

l’l'l ‘

Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

CERT | == Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 2

mailto:permission@sei.cmu.edu

Overview

Motivation
Temporal Logic
Application to Flow
Example
Implementations

CERT ‘ =_'-_;= Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 3

Motivation

Clarify timing relationships

Formalize analysis semantics

« Clearer discussions
« Enhance automation & frameworks
- Combining analyses

Avoid over-specification of timing
Support reasoning about analysis tasks
Access temporal logic methods

CERT | == Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 4

Temporal Logic

Logic with explicit inclusion of time
Classically, first-order logic, could be any logic form

Temporal interpretation: Instantiating circumstances
« Linear time with rollback on contradiction
- Branching time with branch termination on contradiction
- Advantage to linear: simpler structure, no worry over paths
- Advantage to branching: can express path-related conditions

CERT ‘ I_;= Software Engineering Institute CarnegieMe]l(m © 2010 Carnegie Mellon University 5

Temporal Logic Operators

Next(t,p) — p Is true in the instant after t

Global(p) — p Is true independent of time

Following(t, p) — p Is true at some instant after t
until(t,p,q) — p Is true at each instant after t until g is true
Forall (p) — p Is true along all paths

Exists (p) — p Is true along at least one path

CERT ‘ :‘-_;= Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 6

Adaptation to Flow

Description first, then reasoning
lterative semantics — suitable for filter-like processing

Specific semantics:
- 5-tuple
- Ordinal time (inexact comparisons)
- Related flows

CERT | == Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 7

Adapted semantics

R(f,,f,) relation — flow-flow connection

p(f,...), q(f,...) — logic predicates on flow
records/fields

Enable reasoning using Horn clause resolution and
backtracking

CERT | == Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University g

Temporal Operators for Flow

Globally:
G(p): forall(R(f,f’) — p(f) and p(f’))

Next:

N(f,f): iff R(f,f') and f'.stime > f.stime and
does not exists (
R(f,f’) and f.stime > f’.stime >f.stime)

N*(f,f'): transitive relation on N

X(f,p): forall(N(f,f') —p(Ff))
Following:

F(f,p): exists(N*(f,f') and p(f'))
until:

U(f,p,q):

exists (N*(f,f’) and q(f”),
forall (N*(f,f") and f”.stime>f".stime — p(f’) and not q(f’)))

CERT | == Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 9

Descriptive Temporal Example

Spam(s,f):
R(f,f'): f.sip = f'.sip = s and s not on whitelist

If and only if
{f', Following(f,f’,f’.stime < f.stime+5min and
f.dport=email)}|>15 and

(', Following(f.f, f'.stime < f.stime+5min and
f.dport=email)}| 2
|{f', Following(f,f’, f'.stime < f.stime+5min)}| * 0.1

CERT ‘ 5-:—; Software Engineering Institute | Carnegie Mellon © 2010 Carnegie Mellon University 10

Implementation

Use temporal logic to express analysis criteria
Prolog-based (GNU-Prolog)

Logic programming, incorporating time in resolution

Initial prototype to refine semantics

Construct interface to analysis tools (plugin)
Python-based (PySILK)

Declarative programming, incorporate limited
resolution mechanism

Secondary prototype to demonstrate applicability

Eventually construct reasoning rules for analysis
relationships or proof

CERT ‘ :‘-_;= Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 11

Conclusions

Temporal logic adaptation of flow analysis offers
opportunity to encompass large literature of pre-
existing methods

Formalization of time relationships offers opportunity
to improve flow analysis methods

More formal reasoning on flow analysis?

CERT ‘ :‘-_;= Software Engineering Institute | CarnegieMellon © 2010 Carnegie Mellon University 12

