Summarizing and Searching Video: Domain Adaptation

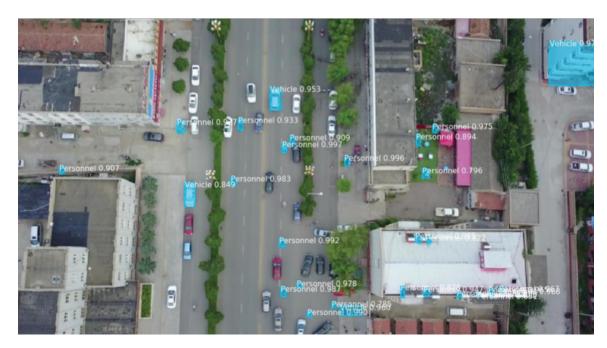
Problem:

Despite impressive improvements in machine learning systems in recent years, classifiers still struggle to perform when there is little or no training data in the target environment. Semantic differences, such as perspective and object density, between source and target environments can significantly degrade classifier accuracy. Non-semantic differences, such as differences in object environment, can significantly degrade classifier accuracy. Differences between the trained and real world data sets also hamper classifier performance.

This is particularly problematic in the tactical setting, where there is limited image data.

Data from target environments may be scarce, or have few examples of object classes. Data may be heterogeneous with regard to perspective, scale and quality. It may also have limited to no metadata.

Solution:


- Stratification of existing data to match semantics of the target environment
- CycleGAN for unsupervised style transfer between images
- Object detection & classification with mask-RCNN trained on existing, labeled data which has had style transfer applied to it

Enabling use of existing labeled data sets to train detectors in low data environments

Object Identification

Poor Object Identification

Improved Object Identification

@article{zhuvisdrone2018, title={Vision Meets Drones: A Challenge}, author={Zhu, Pengfei and Wen, Longyin and Bian, Xiao and Haibin, Ling and Hu, Qinghua}, journal={arXiv preprint arXiv:1804.07437}, $year = \{2018\}$

Edwin Morris | ejm@sei.cmu.edu

Results:

Our work suggests that with significantly different datasets, style transfer is insufficient to create a substitute for training data within the target domain. Furthermore, supplemental data with or without style transfer to target environment has shown minimal benefit as a supplement to target domain data.

Future Directions: Improved semantic matching of target and source images

- Currently, the only semantics we match on are object density. This needs to be expanded to include other image features such as perspective and scale.
- After improved semantic matching, we can again ask if this observation holds to where the target and source environments are semantically similar.

Automatic determination of object identification quality

 Create a flag for when automatic object identification quality is suspect.

06_Summarizing_and_Searching_Video_Domain_Adaptation_2.indo

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1032