Causal Models for Software Cost Control (SCOPE

Recent results from five different studies

How can we better control costs
in software development and
sustainment? This project is
collaborating with systems and
software researchers in applying
causal learning to program
datasets to better understand
which factors can reduce costs.

DoD Problem

» DoD leadership continues to ask
“Why does software cost so much?”

* DoD program offices need to know where
to intervene to control software costs

Our Solution

An actionable, full causal model of software
cost factors immediately useful to DoD
programs and contract negotiators

Causation Vs. Correlation

To reduce costs, what causes code quality
to be good or bad needs to be understood.
Correlations are insufficient. For example,
in the figure below, would increasing
experience level improve code quality?

Code Quality

Experience

Practitioner

Challenge: Which
factors affect a
programmer’s
coding effort and
quality?

Approach: Apply Causal
Discovery to data from
students coding to the
same ten requirements
specifications.

Results: To achieve
precision, software
estimation models
should include both
objective measures
of requirements size
as well as
programmer-specific
coding and defect
factors.

Software Size

Challenge: Which
approaches to
measuring code size
most reflect factors
affecting total effort?

Approach: Apply Causal
Discovery to USC's
Unified Code Count
(UCC) project dataset.

Results: For IT-type
systems, only COSMIC
Function Points,
Programmer Capability,
and Documentation-
Aligns-with-Lifecycle-
Needs repeatedly recur
as direct causes of total
effort.

Architecture

Challenge: How might a
project manager decide
which areas of code to
prioritize for
maintenance?

Approach: Apply Causal
Discovery to the results
of a static code and
design structure
analysis to determine
which type of
architectural pattern
violation most affects
code quality.

Results: Cyclic
dependency was the
single architecture
pattern violation
affecting code quality.

INTEGRATED

CAUSAL MODEL
FOR SOFTWARE

Complexity

Challenge: Which
program and system
complexity factors most
affect cost, schedule,
and performance?

Approach: Apply Causal
Discovery to an existing
project-survey dataset.

Results: The original
analysis identified
difficult requirements,
stakeholder
relationships, and
cognitive fog; causal
discovery confirmed
only cognitive fog.

Leadership

Challenge: For action
planning, which
attributes of teaming
and leadership improve
team performance?

Approach: Apply Causal
Discovery to results of
18 months of weekly
surveys of software
engineers from across a
DoD organization to
determine which factors
most affect cost,
schedule, and quality.

Results: Of the 20+
factors found to be
highly correlated with
cost, schedule, and
quality, direct causal
relationships were
found for only two:
Good Improvement
Data and Stress From
Overtime.

Technical Approach

Working with collaborators, we will identify
and prepare datasets for causal learning
to establish key cause-effect relationships
among project factors and outcomes. For
example, for Quality, we might have this

causal graph:

® 0

E ©
The resulting causal models will then be
“stitched” using CMU algorithms to create
a universal causal model, but estimated and
calibrated for lifecycle and super-domain.

These estimated models will be the basis
for improved program management.

Collaborative Approach

First, the SEIl trains each collaborator to
perform causal searches on their own
proprietary datasets. The SEl then only
needs to be provided with information
about what dataset and search parameters
were used as well as the resulting causal
graph, which is sufficient for integrating
iInto a universal causal model.

Summary

Causal learning has come of age from
both a theoretical and tooling standpoint
and provides better basis for program
control than models based on correlation.
Application to cost estimation requires
large amounts of quality data. Now is

the time to engage the larger community
of systems and software researchers in
deriving improved cost models that enable
improved program control.

Carnegie Mellon University
Software Engineering Institute

Dr. Michael Konrad | mdk@sei.cmu.edu
Robert Stoddard | rws@sei.cmu.edu

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

P5



Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
ASTO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the
copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to
the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-1145



	Blank Page

