Verifying Distributed Adaptive Real (DART) Systems

Pipelined ZSRM Scheduling | |
- Reduces pipeline to ?- . . >

single-resource scheduling ! 5 5 5 >
- Avoids assuming worst P | | g

alignment in all stages .- | >
But need to deal with Pl o
transitive interferences due to) i
zero-slack P, N
Ongoing work: theory worked s L e A
out, implementing scheduler ° j . —— ,
in Linux 6 2 4 6™8 10
Functional Verification Assume-

]] Guarantee

Prove appllcatlon-controll.er Application Contract
contract for unbounded time }1

bounded verification only } ZS!?Z‘;’n”ce
Prove controller-platform lep
contract via hybrid reachability Po—
analysis Guarantee
. Done by AFRL DART Node Contract

. i End-to-End

Working on automation and Functional

asynchronous model of Verification of CPS

computation

Proactive Self-Adaptation Using Probabilistic Model Checking

system
@ environment

non-deterministic

KWWHHNX

PRISM strategy

probabilistic

deterministic

Resolves nondeterministic
choices to maximize expected

synthesis value of objective function
L t—f¥kf i L
o 5 P3
2 Ongoing work: replace
probabilistic model
t=1 i N

checking with dynamic

First choice independent programming for speed.

of subsequent
environment transitions

DART Vision

A sound engineering approach based on
the judicious use of precise semantics,
formal analysis and design constraints
leads to assured behavior of (DART)
systems while accounting for

- critical requirements

- probabilistic requirements

* uncertain environments

* necessary coordination

+ assurance at source code level

DART Process

1. Enables compositional and requirement
specific verification

2. Use proactive self-adaptation and mixed
criticality to cope with uncertainty and
changing context

System + Properties Verifi Code
(AADL + DMPL) erification Generatlon

1. ZSRM Schedulability(Timing)
2. Software Model Checking (Functional)
3. Statistical Model Checking (Probabilistic)

N
F, F

Demonstrate on DoD-relevant model
problem (DART prototype)

- Engaged stakeholders

- Technical and operational validity

Brings Assurance to Code

1. Middleware for communication
2. Scheduler for ZSRM

3. Monitor for runtime assurance

DART Architecture

Software for guaranteed requirements,
e.g., collision avoidance protocol must
ensure absence of collisions

Software for probabilistic requirements,
e.g., adaptive path-planner to maximize
area coverage within deadline

High-Critical

Low-Critical
Threads
(LCTs)

Threads
(HCTs)

ground etc.

Environment — network,
sensors, atmosphere,

MADARA Middleware MADARA

ZSRM Mixed-Criticality Scheduler Scheduler
0OS/Hardware OS/HW
Node | Node |,
Sensors & Distributed
Actuators Shared
Memory

Research Review 2016

DMPL: DART Modeling and Programming Language
- C-like language that can express distributed, real-time systems
+ Semantics are precise

- Supports formal assertions usable for model checking and
probabilistic model checking

- Physical and logical concurrency can be expressed in sufficient
detail to perform timing analysis

- Can call external libraries DMPL supports the right level of

- Generates Compilable C++ abstraction. github.com/cps-sei/dart

- Developed syntax, semantics, and compiler (dmplc)

Example: Self-Adaptive and Coordinated UAS Protection

High
IIIIIIII
Area
Tight
Loose < Formation
Formation
Adaptation: Formation change L
Loose fat b IIIIIII II
Loose: fast but high leader A;Z:r

Demo

exposure
Tight: slow but low leader
exposure

Challenge: compute the probability of @ 9

mission success & compare between
different adaptation strategies.
Solution: Statistical Model Checking

Statistical Model Checking of Distributed Adaptive
Real-Time Software. David Kyle, Jeffery Hansen,
Sagar Chaki.In Proc. of Runtime Verifcation 2015

Distributed Statistical Model Checking
Batch Log and Analyze

I

SMC Aggregator

acceptable?

¥ YES
Result

Each run of log-generator and log-analyzer occurs on a
VM. Multiple VMs run in parallel on HPC platform. Clients
added and removed on-the-fly.

Future Work: Importance Sampling to reduce number of
simulations needed for “rare” events.

Software Engineering Institute ‘ Carnegie Mellon University

Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

Contact: Sagar Chaki | chaki@sei.cmu.edu
P4

