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Abstract

The creation of high-stakes artificial intelligence (AI) has
the potential to positively impact users and their surrounding
environment. However, today’s development practices intro-
duce the risk of serious errors of misuse, disuse, and abuse
that can lead to loss of life and liberty. Software developers
must focus on mitigating these potential errors of use while
also ensuring the timely delivery of AI-enabled technology.
In this paper, we lay out the human-machine interaction in
terms of a cost-benefit analysis and thus highlight the need for
coherency between the human and AI. We use this reference
model to inform development of a Goal, Question, Metric ap-
proach to achieving a Coherent Use of AI-enabled software
that can be applied throughout the DevOps lifecycle.

Introduction
When developing algorithms and software for artificial intel-
ligence (AI) technology, it is easy to get lost in the technical
components, ignoring the intricacies of human interaction.
Software developers are self- and team-motivated to meet
project goals and maximize technical objectives, but may
lose sight of the operational goals of the human-AI system:
What is the point of creating incredibly performant software
if no one uses it? How can we make sure that operators un-
derstand when they should second guess the machine’s out-
put rather than follow it blindly into devastating accidents?
An algorithm may provide unsurpassed atomic performance,
yet not provide the greatest positive impact on mission goals.
It is the AI that considers the complexities of human inter-
actions that provides the greatest benefit to the user as well
as the surrounding environment.

High-Stakes AI Mustn’t “Break Things...” The Silicon
Valley “move fast and break things” mentality dramatically
predates Facebook, and can be measured by the quantity
of software updates that companies like Apple, Microsoft,
and Google deploy to their customers. While this practice
works well when dealing with low-stakes software (i.e., a
phone operating system, targeted advertising, etc.), it be-
comes problematic as we move towards deploying AI in
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high-stakes scenarios. In the context of this paper, we de-
scribe high-stakes AI as AI that has the potential to cause
significant harm to the life or liberty of a user or those im-
pacted by the AI’s use. We have already seen this danger
with self-driving car technology and facial recognition soft-
ware. Tesla’s Autopilot has led to the death of consumers
who have over-relied on their car’s ability to drive itself
(Krisher 2021), yet Tesla continues to push out beta soft-
ware with the vague warning “still be careful, but it’s get-
ting mature” (Musk 2021; Siddiqui 2021). Loss of liberty is
another concern with the advancement of AI. Facial recog-
nition software has already been implemented by some po-
lice departments in an attempt to arrest suspects of various
crimes (Cooper 2021). However, defects in the software and
over-reliance by the users have led to wrongful arrests and
jail time for innocent people (General and Sarlin 2021). Be-
latedly, companies like Amazon have prohibited the police
from using their facial recognition software (Weise 2021).

...But We Still Need to “Move Fast” Despite the opera-
tional risks, AI still needs to be developed in a timely man-
ner. If too much time is allocated to user testing, by the
time the AI is deployed, it is obsolete. This is important in
the context of the Department of Defense (DoD). To remain
competitive with our adversaries, the DoD needs to act now
to start effectively implementing AI (Vergun 2021).

However, the traditional developmental test and evalua-
tion (DT&E) method of software testing is not compatible
with the dynamic nature of AI-enabled technology. The DoD
has recognized that AI software requires a more flexible test-
ing approach, suggesting the use of software engineering
practices like DevOps (or DevSecOps) (Flournoy, Haines,
and Chefitz 2020; Software Engineering Institute 2021).

Example: The Z-Virus Diagnosis Decision Aid Con-
sider the following scenario, inspired by movies like (Carna-
han, Goddard, and Lindelof 2013), with current high-stakes
AI development practices:

The world is experiencing a zombie apocalypse caused by
a new virus (Z-Virus). Z-Virus has an incubation period of
5 days before an individual is zombified. If detected early,
doctors can cure a Z-Virus infection, but Z-Virus is difficult
to detect during the incubation period. A team of develop-
ers have come together to create an AI tool to assist doctors
in diagnosing patients, the Z-Virus Diagnosis Decision Aid
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(ZDDA). The team applies a linear, waterfall software engi-
neering methodology, described in (Adenowo and Adenowo
2013), common when creating high-stakes software.

First, the developers identify the requirements of the AI.
Then, they use a dataset to train a deep neural network
which, given patient data from the doctor, outputs a posi-
tive or negative diagnosis in a black-box fashion. Develop-
ment is followed by extensive model accuracy testing until
the ZDDA has achieved an F1 score of 0.95. Excited by their
accomplishments, the development team deploys the ZDDA.
However, to their surprise, the incidences of zombified hu-
mans only decreases slightly. What happened?

The developers discovered that, in most cases, the doc-
tors using their ZDDA did not trust the output of the AI and
chose to diagnose their patients manually. In other failure
cases, doctors over-relied on the ZDDA, following its out-
put blindly. The team discovers that the ratio of failures was
5:1 (for every case of coherent use of the AI, there were 5
cases of misuse or disuse). Further, the developers discov-
ered that the ZDDA was only producing an F1 score of 0.75
post-deployment, as evolutionary mutations caused bias in
their training dataset. These development failures caused the
ZDDA to have only a slight impact.

Solution: Enabling a Focus on Operational Impact The
above example highlights the need to ensure human-AI co-
herency. This coherency should not be a burden placed upon
the user but a responsibility of the developer themselves.
Most influences of appropriate reliance and trust in AI cor-
respond to developer decisions that are made as early as de-
sign time. However, we cannot expect developers to make
the right decisions if we do not provide them the tools to do
so while maintaining their development speed.

Thus, in this paper we present the groundwork for a Goal,
Question, Metric (GQM) (Basili, Caldiera, and Rombach
1994) approach to achieving a Coherent Use of AI-enabled
technology. The goal of our framework is to establish a tem-
plate GQM breakdown for AI developers based on a model
of human-machine interaction. In addition, we provide ideas
as to how developers can integrate this approach into the De-
vOps lifecycle as a means to ensure coherency from the very
start of development.

Background
In this section, we explain our reference model of human-
machine interaction. Next, we define our concept of “Coher-
ent Use.” Finally, we will introduce both the GQM approach
and DevOps software development lifecycle, which we ap-
ply in the next section to evaluate Coherent Use.

Modeling the Human-Machine Interaction
To understand the importance of coherent AI, it is neces-
sary to model human-machine interaction (HMI). Our model
(shown in Figure 1) is based on an idea from (Polizzotto and
Molella 2019) that V alue = Benefit/Cost. We argue, in
general, if the benefits outweigh the costs of using a machine
(V alue > 1), the human is likely to use the machine, how-
ever, if the benefits do not outweigh the costs (V alue ≤ 1),
the human will be unlikely to use the machine. This basic

idea is the foundation of our HMI model. We developed this
reference model as an abstraction of five spanning use cases;
in this paper, we continue using the ZDDA as an example.

HMI Reference Model Overview The model starts when
a potentially infected patient goes to their doctor. This con-
text from the patient stimulates a need for the doctor to
help the patient (GET NEED). Then, the doctor determines
whether the ZDDA will help them to satisfy their need
to help the patient (NEED MACHINE BENEFIT). If the
doctor determines that the ZDDA will not assist them in
helping the patient (NEED MACHINE BENEFIT = false),
they will diagnose the patient themselves for a non-Z-
Virus ailment (DO IT MYSELF). Otherwise, if the doctor
does believe that the ZDDA is relevant to helping the pa-
tient, (NEED MACHINE BENEFIT = true), they will be-
gin a cost-benefit analysis. Within this analysis, the doc-
tor will determine the perceived value of the ZDDA. If
it is perceived as low value (PERCEIVED VALUE > 1
= false), then the doctor will diagnose the patient them-
selves (DO IT MYSELF). Otherwise, if the doctor believes
the perceived value of the ZDDA is of high value (PER-
CEIVED VALUE > 1 = true), then the doctor will have the
ZDDA provide them with its output (PROVIDE VALUE).
Note that in this first iteration of the HMI model, we skip
the NEED FULFILLED action (indicated by * in Figure
1), this is done because NEED MACHINE BENEFIT cov-
ers this condition so an additional check is not needed.
From here, the doctor will take the ZDDA’s output along
with new knowledge regarding the situation (i.e., peer-group
doctor gossip, changed patient state, etc., which may each
have different update rates) (NEW KNOWLEDGE) and per-
form another cost-benefit analysis of accepting or reject-
ing the ZDDA’s recommendation (PERCEIVED VALUE >
1). If the doctor perceives the value of the ZDDA as pos-
itive (PERCEIVED VALUE > 1 = true), then they accept
the diagnosis. This fulfills their need to help the patient
(NEED FULFILLED = true) and allows them to deliver this
diagnosis to the patient. However, if the doctor perceives
the value of the ZDDA as low (PERCEIVED VALUE > 1
= false), then the doctor will reject the diagnosis and diag-
nose the patient themselves (DO IT MYSELF). This diag-
nosis can then be delivered to the patient. Throughout this
interaction, both the doctor and the ZDDA deliver diagnosis
outcomes to the environment.

HMI Failure Modes The nature of HMI lends itself to a
variety of failure modes that are characterized by terminol-
ogy used within (Parasuraman and Riley 1997): abuse, mis-
use, and disuse. Abuse refers to a machine that is being used
outside the scope of its intended purpose; misuse describes
an over-reliance on technology; and disuse is characterized
by an under-utilization of technology. As shown in Figure 1,
there are two places where these failures happen.

Abuse failures occur when deciding whether
or not a machine can fulfill a user’s need
(NEED MACHINE BENEFIT). Within the ZDDA ex-
ample, this occurs if a doctor attempts to use the ZDDA to
diagnose a condition other than Z-Virus infection. Misuse
and disuse result from an inaccurate perception of value
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Figure 1: Reference Model of the Human-Machine Interaction.

(PERCEIVED VALUE > 1). Misuse results if the user per-
ceives the value of the machine as higher than it actually is,
thus relying on the machine when they should not (i.e., the
doctor accepting an incorrect diagnosis from the ZDDA).
Disuse occurs if the user perceives the value of the machine
as less than it is (i.e., the doctor rejecting a correct diagnosis
from the ZDDA). In this paper, we will focus specifically
on the second area of failure (PERCEIVED VALUE > 1).

Ideally, the user would always make a decision that avoids
these error modes (following the non-bold arrows in Figure
1), producing the best outcome on the environment.

Defining HMI Coherent Use
Most developers tend to focus on creating software that
provides the best value to the user (focusing on the PRO-
VIDE VALUE function in Figure 1). For instance, a meta-
analysis of ICML and NIPS papers show top keywords sur-
rounding “learning,” “networks,” “optimization,” “efficient,”
etc., with words like “human” and “interaction” not making
the list (Kakao AI Report 2017). This focus on performance
impacts an AI’s trustworthiness: “trustworthy automation
is automation that performs efficiently and reliably” (Lee
and See 2004). Thus, providing the best possible value to
the user is ensuring the trustworthiness of the technology
in terms of software performance. However, this empha-
sis on trustworthiness only represents half of the story. De-
velopers must also focus on the user’s perception of value
(PERCEIVED VALUE > 1). This perception of value is
termed trust calibration (or simply calibration) in the human-
machine trust/interaction literature (Lee and See 2004; Oka-
mura and Yamada 2020; Tomsett et al. 2020). From (Lee
and See 2004), “calibration refers to the correspondence be-
tween a person’s trust in the automation and the automa-
tion’s capabilities (Lee & Moray, 1994; Muir, 1987).” Ex-

tending this definition to AI, trust calibration relates to the
perceived value of the AI, which is about correctly identify-
ing when to trust the AI and when to question its output.

As figure 2 shows, any gap in trustworthiness (actual
value) or trust calibration (perceived value) results in a fail-
ure (misuse or disuse). To avoid these errors, we define a
combined state of human-AI system use called Coherent
Use. This state occurs when the machine is trustworthy and
allows for trust calibration by the user. This means that the
machine provides value to the user and that the user is able to
correctly identify its value, thus establishing coherency. We
argue that this state is the basis for the best human-machine
interaction outcome.

Recent works describing Trustworthy AI (Thiebes, Lins,
and Sunyaev 2021; Jain et al. 2020; Varshney 2021), ex-
plicitly reference requirements for transparency and explain-
ability. We believe that this community is using the phrase
“trustworthy AI” to span both the concept of trustworthi-
ness and that of calibration. We commend their attention and
inclusion of calibration features in the popular concept of
Trustworthy AI, but assert that trust calibration is important
enough when attempting to avoid misuse and disuse, that
it should be properly abstracted from trustworthiness. This
clarity ensures that trust calibration will get the emphasis
that is required, given the impact that it can have on users
and the overarching environment.

The Goal, Question, Metric Approach
The Goal, Question, Metric (GQM) software evaluation ap-
proach, described by (Basili, Caldiera, and Rombach 1994)
utilizes a top-down methodology for identifying the appro-
priate metrics to achieve high-level goals. The process starts
by identifying an overarching goal, then creating quantifi-
able questions based on that goal, and finally identifying
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Figure 2: Coherent Use Matrix highlighting various HMI failure modes.

metrics that answer those questions and thus relate back to
the goal. By doing this, the paradigm is able to ensure that
all measures are characterized by a goal and are not being
taken needlessly.

The first step in this approach involves identifying a high-
level goal. Goals are made up of four main components:
the purpose of the measurement, the object being measured
(taking the form of a product, process, or resource), the is-
sue, and the viewpoint from which the measurement was
taken. Once the goal is established, the questions can be cre-
ated based off of a model. Given these questions, metrics
(both objective and subjective) are determined to answer the
questions and measure progress toward the goal.

After the consideration of many different test and evalua-
tion (T&E) techniques, we believe that the GQM approach
is the most logical and easy to understand method, thus pro-
viding a low barrier to entry for developers who may have
never heard of this approach. In addition, the paradigm en-
sures each measure is taken with purpose which will keep
the overall evaluation focused specifically on Coherent Use.

The DevOps Lifecycle
DevOps is a popular software engineering process that seeks
to merge the development and operations of a software prod-
uct. This leads to intercommunication between developers
and operators on cross-functional teams that want to deliver
continuously at quick speeds (Ebert et al. 2016). The De-
vOps Lifecycle illustrates how developer practices (plan, de-
velop, verify, test) and operator practices (deploy, operate,
and monitor) can be intertwined to create a cross-functional
process that integrates operations into the development pro-
cess. This lifecycle is generally visualized as an infinity with
the monitoring phase flowing back into the planning phase.
An in-depth explanation of the DevOps lifecycle can be
found within (Alnafessah et al. 2021).

Evaluating Coherent Use with GQM
As a means to assert the quick delivery of AI that allows
for coherency between the user and the software itself, we

propose to integrate our concept of Coherent Use within the
DevOps lifecycle through the use of the GQM approach.

Establishing the Goal First, we need to establish the goal
of our GQM breakdown. Recall that, a GQM goal is made
up of a purpose, object, issue, and viewpoint.

Given our discussion of Coherent Use, we will make this
concept our main issue. Next, we characterize our purpose
as “maximize”, which leads to a goal of maximizing the
coherency between the user and the AI. Maximization was
chosen specifically because it characterizes the need to min-
imize occurrences of misuse and disuse, thus allowing the
user to avoid the error modes described in Figure 2 as often
as possible. The object of the goal is the AI-enabled technol-
ogy whose coherency is being maximized. Since this GQM
breakdown is meant as a tool for the developer, the devel-
oper will be the one recording metrics. Thus, the viewpoint
of the goal is that of the developer themselves.

This makes the overarching goal: Maximize (purpose)
the Coherent Use (issue) of <the AI-enabled technology>
(object) from the viewpoint of the developer (viewpoint).

Creating Questions Since the GQM paradigm bases
questions on a characterizing model, we use our reference
model of HMI (Figure 1) to establish the components of Co-
herent Use, namely trustworthiness and trust calibration. We
identify four main template questions:
1. Is <the AI-enabled technology> trustworthy?
2. Does <the AI-enabled technology> allow for trust cali-

bration by the user?
3. Is Coherent Use increasing, decreasing, or remaining

constant between delivered software builds? and,
4. Is the current rate of Coherent Use sufficient from the

viewpoint of the developer?
Questions 1 and 2 are inherent to our reference model of

HMI. These questions describe the components of Coher-
ent Use, specifically, trustworthiness and trust calibration.
Question 3 is used as a means to characterize progress to-
ward the goal. However, measuring the maximization of a
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property can be difficult, especially since misuse and disuse
will likely never be fully mitigated. Thus, we describe the
fluctuations in the machine’s ability to be coherently used.
Finally, Question 4 helps to evaluate the developers percep-
tion of sufficiency. Although Questions 3 and 4 are not ex-
plicit in the reference model, they are important as a means
to not only measure the individual components of Coherent
Use (trustworthiness and trust calibration) but also to mea-
sure the overall human-AI system performance.

Example Metrics Now that the overarching questions
have been established, metrics must be determined that can
aid in answering them.

Question 1 is about the trustworthiness of the technology.
For the purposes of establishing example metrics for trust-
worthiness, we continue with the viewpoint that trustworthi-
ness is based on the AI-enabled technology’s capabilities.
Thus, we can look at trustworthiness in terms of technol-
ogy performance. More specifically, we view performance
as not only raw mathematical performance but also all rele-
vant “-illities” (reliability, robustness, etc.) that pertain to a
piece of AI-enabled technology (de Weck, Ross, and Rhodes
2012). Performance will certainly mean different things for
different types of AI, which may require developers to come
up with metrics that are dependent upon their resources and
the intended capabilities of the AI. In general, some exam-
ple metrics for trustworthiness include overall AI accuracy,
robustness, and frequency of failures.

Question 2 discusses trust calibration, which we equate to
the perception of the value the AI-enabled technology pro-
vides the user. When users are available, and when software
builds are mature enough to support user-interactive testing,
there are an array of trust and workload measures and met-
rics. In this case, trust calibration can be measured explicitly,
in the field. However, the software development team will
require assessment of this question before the technology
is mature, and more frequently than users may be leveraged.
Within the literature, trust calibration is discussed in terms of
transparency and explainability (Tomsett et al. 2020; Boyce
et al. 2015; Okamura and Yamada 2020). Thus, we focus
our trust calibration metrics (when a user is not available)
on the transparency of the software. This includes not only
transparency as the AI delivers an output to the user but also
transparency in terms of making users aware of the limi-
tations of the AI-enabled technology’s use. Some example
metrics for trust calibration include the number of misuse
and disuse accidents, the performance/correctness of an ex-
plainable AI interface, and communicated limits of use.

Question 3 focuses on ensuring progress toward the goal,
specifically measuring the fluctuations of Coherent Use.
This can be done by analyzing the overall human-AI sys-
tem performance. Measurements include the frequency with
which the machine is used compared to past frequency met-
rics, and the current number of misuse and disuse accidents
compared to the past number of accidents.

Finally, Question 4 is characterized by the developer’s
perception of Coherent Use. This question can be answered
using subjective analysis by the developer given their under-
standing of the coherency of the software product.

GQM Integration with DevOps
AI must be developed and deployed with speed and agility.
Thus, we adapt the previous GQM template to fit within the
DevOps lifecycle.

During development, there are times when certain capa-
bilities or the entire software product itself does not exist yet
to be tested. This creates the need to be able to assess trust-
worthiness and trust calibration when a piece of software is
at different phases of development. Thus, we break down the
DevOps lifecycle into three main GQM testing phases:

1. Active Development (Plan, Develop);

2. Pre-Deployment Testing (Verify, Test, Deploy); and,

3. Post-Deployment Testing (Operate, Monitor).

Each of these phases has its own set of questions and as-
sociated metrics. During the first iteration of the Active De-
velopment phase, the AI-enabled technology does not yet
exist and therefore the questions are focused on a potential
for trustworthiness and trust calibration, and questions are
answered in terms of design considerations and software re-
quirements analyses. On the second iteration of this phase,
the developer perception of AI coherency can also be mea-
sured. In the Pre-Deployment Testing phase, the questions
focus on the performance of the AI, including the perfor-
mance of transparency methods meant to aid in trust cali-
bration. Finally, during the Post-Deployment Testing phase,
questions are formed in terms of how the AI is performing
in the real world regarding trustworthiness and the ability
for users to calibrate their trust. This phase is also where the
question of overall human-AI coherency emerges, as there is
now a full human-AI system where user interactions can be
analyzed. An overview of these questions and metrics can
be seen in Figure 3, note, that questions and metrics with a
* are used after the first DevOps cycle.

Using the GQM Template
Given the template described above, the AI development
team can use the goal template by substituting their AI-
enabled technology as the object of the goal. From there, the
questions at the corresponding phases of the DevOps life-
cycle can be used as a means to guide the selection of ap-
propriate metrics. Depending upon the type of AI and what
can feasibly be measured by the developer, metrics are de-
termined that make the most sense for the software product.

Predicted Impact
In terms of cost-savings, the IBM System Science Institute
performed a cost-savings analysis based on when security
bugs were found during a traditional software development
approach (waterfall model). They found that bugs discov-
ered during testing were 15x more expensive to fix than bugs
found during the design phase (Dawson et al. 2010). While
these metrics focus on security, we believe they extend to
bugs in Coherent Use as they still require immediate rem-
edy for the safety of the user, especially when utilizing AI in
high-stakes scenarios.
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GQM Testing Phase DevOps Phase Questions Example Metrics

Active Development

Plan
Q1.1: Does <the AI-enabled technology> design 
promote trustworthiness?

Q1.2: Does the <the AI-enabled technology> 
design create a potential for trust calibration?

Q1.3: Is the current rate of Coherent Use 
sufficient from the viewpoint of the developer?*

M1.1: AI accuracy requirements; AI robustness 
requirements

M1.2: # of requirements asserting AI 
transparency; design meeting notes

M1.3: Developer subjective understanding of 
current AI coherency*

Develop

Pre-Deployment 
Testing

Verify Q2.1: Is <the AI-enabled technology> showing 
trustworthy behavior in controlled scenarios?

Q2.2: Are <the AI-enabled technology>’s 
components related to trust calibration working 
properly? 

M2.1: AI Accuracy; AI Reproducibility; # Passed 
Requirements

M2.2: Accuracy of XAI/Model Confidence; 
Documentation of AI Performance; 
Documentation of Limits of Use

Test

Deploy

Post-Deployment 
Testing

Operate
Q3.1: Is <the AI-enabled technology> showing 
trustworthy behavior post-deployment?

Q3.2: Are users able to calibrate their trust while 
using <the AI-enabled technology>?

Q3.3: Are instances of Coherent Use increasing, 
decreasing, or remaining constant between 
delivered software builds?

M3.1: Post-Deployment Accuracy; Incidences of 
Software Failure

M3.2: # Misuse/Disuse Accidents

M3.3: Compared # of Misuse/Disuse Accidents; 
Compared Software Usage

Monitor

Figure 3: Varying questions and example metrics over the DevOps lifecycle.

ZDDA Example
To demonstrate our proposed GQM approach, we return to
the ZDDA example. Instead of using the traditional T&E
method described previously, this time the team uses our
GQM approach to ensuring Coherent Use. To do this, they
first establish their goal as: Maximize (purpose) the Coher-
ent Use (issue) of the ZDDA (object) from the viewpoint
of the developer (viewpoint). Next, they begin development
while establishing questions and metrics for each GQM test-
ing phase using the template laid out in Figure 3.

Phase 1: Active Development While actively developing
the ZDDA, the developers establish the following questions
during the first iteration:
• Q1.1: Does the ZDDA design promote trustworthiness?
• Q1.2: Does the ZDDA design create a potential for trust

calibration?
After the initial planning and development phases, the de-
velopers answer these questions using a variety of metrics.
For example, a metric that could be used for Q1.1 is the di-
agnosis F1 score asserted by the software requirements. For
the sake of this example, let’s say this value is 0.90. Q1.2
could be answered with a metric describing the number of
requirements asserting algorithm transparency, let’s say that
after initial planning this is 0 requirements (recall that the
developers were originally creating a black box algorithm).
While the accuracy score intended for the AI is seemingly
sufficient, the developers quickly realize by using this frame-
work that they need to create more requirements related to
the transparency of their algorithm. Thus, they decide to add
a feature that displays the confidence level of the AI with
its diagnosis, which creates 5 new software requirements.
The developers decide that this is satisfactory to achieve a

potential for both trustworthiness and trust calibration and
therefore move onto the next phase.

Phase 2: Pre-Deployment Testing The following ques-
tions are created for the Pre-Deployment Testing phase:

• Q2.1: Is the ZDDA showing trustworthy behavior in con-
trolled scenarios?

• Q2.2: Are the ZDDA’s components related to trust cali-
bration working properly?

The developers answer these questions with an F1 score of
the ZDDA algorithm (Q2.1) and a model confidence accu-
racy percentage (Q2.2).

The accuracy percentage for model confidence represents
the percentage of the time the model confidence output is
within 5% of the true model confidence percentage. In this
example, the developers found that their algorithm achieved
an F1 score of 0.9 while their model confidence feature
achieved only 60% accuracy. From these results, the devel-
opers were able to iterate on their model confidence algo-
rithm and build the accuracy to 95%. These metrics pass the
requirements established in the design phase and allow the
developers to deploy the ZDDA.

Phase 3: Post-Deployment Testing The questions created
in the Post-Deployment Testing phase consist of:

• Q3.1: Is the ZDDA showing trustworthy behavior post-
deployment?

• Q3.2: Are users able to calibrate their trust while using
the ZDDA?

• Q3.3: Are instances of Coherent Use increasing, decreas-
ing, or remaining constant between delivered software
builds?
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Figure 4: Comparison of the original development of the ZDDA using Waterfall phases, described in (Adenowo and Adenowo
2013), and the development of the ZDDA using the GQM breakdown for Coherent Use throughout the DevOps lifecycle.

These questions are answered by measuring the post-
deployment overall ZDDA F1 score (Q3.1) and the ratio of
misuse and disuse incidences compared to incidences of Co-
herent Use (Q3.2 and Q3.3). The developers find that their
AI only achieves an F1 score of 0.75 post-deployment and
the misuse and disuse ratio is 1:10 (for every case of mis-
use/disuse there are ten cases of Coherent Use).

Starting with Q3.1, the developers discover the decreased
accuracy is due to bias in their training data set. The misuse
and disuse ratio shows that while doctors are able to calibrate
their trust, there is still more that the developers could be do-
ing to help this process, answering Q3.2. At this stage Q3.3
cannot be answered since the level of Coherent Use has not
been measured previously, however, we include this ques-
tion in this first DevOps iteration because it establishes the
importance of measuring Coherent Use during this phase.
This metric can be used in the subsequent iterations of the
DevOps lifecycle to answer this question.

Phase 1: Active Development, Again After going
through the DevOps cycle once, the information gathered
from the earlier iteration can be used to inform new re-
quirements and feature development. Within this phase, the
two previous questions are asked again, however, this time a
third question can be asked as follows:

• Q1.3: Is the current rate of Coherent Use sufficient from
the viewpoint of the developer?

This additional question helps to drive the developers toward
continually improving their software. In this case, while the
AI performed well, the developers were not satisfied with
the rates of Coherent Use that were measured during Post-
Deployment Testing. Thus, the developers decide to add re-
quirements asserting the scope of their training data set in

order to avoid errors of inaccuracy post-deployment. They
also add additional transparency feature requirements (i.e.
an explainable AI interface), to help aid in reducing the cases
of misuse and disuse even further.

Discussion
The Z-Virus example highlights why this framework is
needed in practice. It opens the door for conversation sur-
rounding Coherent Use from the very start of development,
thus allowing for cost savings and an operationally impact-
ful deployed product. The developers were able to realize,
within their DevOps lifecycle, where the ZDDA was go-
ing to fall short and fix those problems preemptively rather
than wait until the end of the lifecycle. This was seen when
the developers added an additional feature during the Active
Development phase, fixed a flaw in their model confidence
feature during the Pre-Deployment Testing phase, discov-
ered problems with their training data set during the Post-
Deployment Testing phase, and added even more require-
ments during the second iteration of the Active Development
phase. Assuming quarterly releases (every 3 months) using
the GQM DevOps approach and one year of development
for the traditional approach, Figure 4 shows a comparison
of these two methodologies. The GQM T&E methodology
not only deployed after only 3 months of development, but
also allowed for increased iteration on the software. This
provided significant cost savings compared to the traditional
approach, which did not discover major errors of misuse and
disuse until after deployment. While the product created by
the GQM process was not perfect, this approach made the
first deployment of the ZDDA more effective at stopping
the zombie apocalypse and informed the developers on addi-
tional features that could improve the product even further.
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Conclusions and Future Work
Our whimsical example demonstrates that the current AI
development practice does not suffice when creating high-
stakes AI, where errors of misuse and disuse can lead to
devastating losses of life and liberty. It is the responsibility
of the development team to ensure that they produce high-
quality (trustworthy) AI that allows the user to accurately
perceive this quality (trust calibration); without this consid-
eration, there is a high potential for misuse and disuse of the
software. From our reference model of HMI, we proposed a
GQM approach that seeks to maximize the Coherent Use of
an AI. This approach is embedded within the DevOps life-
cycle to help maintain development agility.

Future work on this GQM template involves maturing the
language used for each of the template questions as well
as developing a deeper understanding of the correct met-
rics to use in certain product scenarios. In addition, the tem-
plate can be tested on an actual (rather than hypothetical) AI
where real data can be gathered regarding trustworthiness
and trust calibration.
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