Using Stakeholder Preferences to Make Better
Architecture Decisions

Neil Ernst, John Klein

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA, USA
{nernst, jklein}@sei.cmu.edu

Abstract—A roadmap to modernize the architecture of an
existing system must satisfy many strongly-positioned
stakeholders and satisfy the constraints of continuing business
operations as the plan is implemented. Our previous work
reported on a method to engage with stakeholders to model
architecture options for a modernization roadmap. These models
have proven to be too large to analyze all options manually: Ad hoc
approaches must be employed to prune the space of possible
solutions, which risks dropping optimal solutions. We report here
on a method that efficiently collects stakeholder preferences about
architecture options and uses an automated search-based
optimization approach over the full solution space to identify the
most important architecture decisions, i.e., the decisions that have
the most influence on stakeholder satisfaction.

Keywords—goal model, search-based software engineering,
architecture decision support

I. INTRODUCTION

IT system modernization projects present special challenges
for architecture decision making. Labeling a project as
“modernization” implies that there is an existing system that
provides sufficient value so that it is worth investing to maintain
or improve that capability. While all systems have stakeholders
who should be respected, in a modernization project the
stakeholders use the existing system to deliver essential services
to the enterprise, giving them a bigger voice in architecture
decisions.

In this context, the architect must develop a roadmap
defining a sequence of architecture changes [5]. Stakeholder
cooperation is needed to successfully execute the roadmap; e.g.,
they provide necessary domain knowledge, provide funding for
operation of the new system, and will perform acceptance testing
of the new system. The architecture decision-making process
must include this large and diverse group, who may have
conflicting preferences from differing goals and evaluation
criteria. Modernization changes technology, and also processes
and organizational structure, and our experience is that decisions
can have broad impact and trigger strong stakeholder reactions.

This paper describes an architecture decision-making
process which addresses the specific challenges of
modernization projects, and can be applied in other less
challenging contexts. The process is scalable and transparent,
and allows direct stakeholder participation in either
collaborative or asynchronous modes. The process has four
steps:

George Mathew, Tim Menzies

Computer Science
NC State University
Raleigh, NC, USA
{george.meg91,tim.menzies } @gmail.com

1. Capture decision alternatives identified by stakeholders in a
goal model [10], along with cost and benefit values;

2. Collect stakeholder preferences about the options using the
analytic hierarchy process (AHP);

3. Apply a search-based optimizer that performs heuristic
sampling of the entire decision space represented by the
softgoal model;

4. Rank solutions on cost, benefit, and stakeholder
satisfaction, and identify the architecture decisions that have
the highest impact.

The contribution of this paper is a stakeholder preference
collection step in this process, and use of stakeholder
preferences in architecture decision-making.

II. ELICITING DECISION SPACES WITH GOAL MODELS

A goal model expresses the relations among softgoals, which
are subjective; hard goals, which can be objectively satisfied;
and tasks or services, which reflect activities necessary to satisfy
a goal. These elements are refined with and/or relations [10].
Fig. 1 shows a typical goal model used to specify modernization
roadmap architecture options.

Reasoning on a softgoal model labels each hard goal and
task/service element as do or do not, in accordance with the
semantic constraints of the inter-element relations. We call such
a labeling a solution candidate. A solution candidate embodies
a set of semantically acceptable architecture decisions. A
solution candidate can be evaluated by summing the cost, risk,
stakeholder satisfaction, or other metrics from all elements
labeled do, and by evaluating the benefit produced by the root
soft goals satisficed by the labeling and the root hard goals
satisfied by the labeling [7].

We used a goal model to capture the decision space for our
modernization planning in a process we described in [5]. The
challenge is to obtain, from a set of technical stakeholders, their
assessment of costs and benefits for a range of architectural
options. The input to this process is a set of architecture risks
identified in some architecture analysis; in our case, using the
Architecture Tradeoff Analysis Method (ATAM) [3]. The
workshop facilitators prioritize the risks, and then create
scenarios that ‘test’ the risks. In a 2-day workshop, technical
stakeholders (e.g., chief architects, development managers, team
leads) are asked to suggest technical options—decisions—for
mitigating the risks. For example, if a risk is that data access
relies on a direct database connection, leading to modularity

Good example of Agile .
Government development Easily Share Data W/
Partners

A“

Incremental
Rewrite

7

Quick Feature Delivery

e
l| - « K
Choose Doc X
Tool Service Layer

Choose
Candidate
System

Create Test
Environment

DB Vendor General Test
Test Env Env

Documentation
Tool Tiers w/ Service

Sve layer w/
extracted biz logic

Bakeoff Result

Sve layer w/
existing biz logic
in

Provide logical
data schema
interally

SO
Easily Share Data Inlsrn X
Existing Apps Data Model App Framework Monitor

Data Service Data Service
Spec Pilot

Comprehensive
Data Model
Define data model
for all shared data

Modemize
\ 4 Hard goal

¢ confiit —
Task/
service
LEGEND

Big Bang
Rewrite
Layer Sequence
o R

New Database

/Access Contro /Access Control Monitoring Pilot
Assessed Pilot
Specific Data
Model

coordinates and
external client does
whatever

PnP Framework

App Framework

J2EE
Specification
Extensible Data
Model

External data model
can be extended
Define ext. Build internal
mandatory data extensible data
std model
Data Model
Pilot

Exteral clients
get exactly what
they request

XXX coordinates
and internal client
does whatever

Fig. 1. Modernization roadmap options model example (from [5])

violations, a potential option is to introduce a service layer as a
mediator.

The collected set of options is analyzed by the facilitator
team to identify dependencies and collapse similar options, and
the result is then presented back to the stakeholders in another
session. A lightweight cost/benefit analysis elaborates the pros
and cons (technical benefits to selecting the option) and then
asks for ordinal, relative costs for implementing that option (e.g.,
High/Medium/Low relative to other options). The result of this
is a set of options that the facilitators can structure into the goal
model shown in Fig. 1. The modeling step is currently based on
the skill and judgment of the facilitators at identifying similar
options (decision points) and dependencies. The next phase of
the approach is a member-checking exercise in which the
structure model is evaluated with the stakeholders a final time.

III. PRIORITIZATION WITH THE AHP

The AHP is a method for making a decision, described in
detail by Saaty [13]. Briefly, the AHP represents the decision as
a hierarchy of criteria and options. The decision maker first
makes pairwise comparisons among all of the criteria,
expressing his judgment about the relative importance between
each pair of criteria. Then, for each criterion, the he judges the
relative ability between a pair of options to satisfy the criterion.
These are subjective, personal, and relative judgments about
what will satisfy the stakeholder.

The AHP assigns numeric values to the judgments and then
weights the option judgments by the criteria judgments to rank
the options. We then combine the individual stakeholder
judgments in our search-based optimizer.

We applied the AHP to collect preferences about the
decisions in model shown in Fig. 1. That model contains six

!http://csrc.nist.gov/roi/wksps0603-notes/Risk-Handout.pdf

decisions—there are six goals refined using exclusive or
relations. AHP treats each decision independently, with its own
criteria. However, this set of decisions is coherent (i.e. decisions
about the same system, made at the same time), and so we used
a single set of criteria for all, since the architecture qualities
represented by the criteria are system-wide properties and their
relative importance should not change from decision to decision.
This system was developed by a government agency, so we
selected the six most relevant criteria from a set used to assess
government IT projects': (1) Schedule; (2) Life-cycle costs; (3)
Dependencies and interoperability; (4) Risk of failure; (5) Risk
of not achieving business goals; and (6) Security. The resulting
AHP hierarchy for one decision—“What type of data model
should we develop?”—is shown in Fig. 2.

Stakeholder preferences were collected using a spreadsheet-
based form. In our pilot experiment, this took stakeholders less
than 30 minutes to make the 75 pairwise judgments required by
this model. In cases where the number of pairwise comparisons
becomes too large, there are approaches that sample
comparisons across a group of deciders, to reduce the workload
on each individual to an acceptable level [6].

We wused an online AHP data analysis package
(https://github.com/gluc/ahp). The analysis produced a ranking

Data Model?

) (Overau Risk of Investment Failure)

(Geomecms) (o

Fig. 2. AHP hierarchy example

example table for one stakeholder for the decision hierarchy
from Fig. 2. The first column shows how this stakeholder
weighted the criteria, with the pairwise judgments transformed
into a weighted ranking: Business risk was the most important
(35.3%), followed closely by Schedule risk (30.6%). The others
were all ranked relatively low. The first row of the table shows
the final result of the AHP calculations, which weight the
stakeholder’s pairwise judgments among the options by the
stakeholder’s criteria weights. In this case, the stakeholder
prefers the “Specific” option for a Data Model, with a weight of
63.7%. The “Extensible” option has a weight of only 26.6%,
while the “Comprehensive” option has a weight of only 9.7%.

LOOPHOLE Key Decisions
er)

e ones that

Decision Structure » Differential Bayesian
(Softgoal Model) Evolution Support
(Search) (Rank)
Decision Cost/Benefit » »
(Existing Technology) What are the Which
best decisions
i appear in
of decisions? the best
solutions?

(Analytic Hierarchy l »
Process)

Weight Specific Extensible Comprehensive Consistency

Data Model? 1000% (B30 26.6% 9.7% = ©@37.0%
Business 35.3% | 264% 47% 4.2% 1.1%
Schedule 30.6% 19.8% 8.5% 2.2% 5.6%
Overall Risk of Investment Failure 12.6% 57% 57% 1.1% 0.0%
D iesand ity with Other 9.9% 4.6% 4.6% 0.7% 0.0%
Life-Cycle Costs 8.8% 6.2% 2.1% 0.5% 0254%
Security 2.8% 0.9% 0.9% 0.9% 0.0%

Fig. 3. AHP Example

The rightmost column shows the measure of the transitive
consistency of the pairwise judgments: If A is judged as better
than B, and B is judged as better than C, then we would expect
that A would also be judged better than C. Saaty discusses why
the judgments should be reviewed when the consistency metric
is greater than 10% [13]. (Although the AHP literature labels this
metric “consistency”, note that the value increases as the
judgments become more inconsistent.) The data analysis
package that we used calculates the aggregated consistency
metric (37.0%), however we must look to the metrics for each
criteria to make an assessment. For the “Life-Cycle Costs”
criterion, the metric was significantly above the threshold, at
25.4%. We accepted this inconsistency, since the stakeholder
ranked this criterion as unimportant and the inconsistency was
likely due to a lack of any strong preferences about the options.
However, a similar metric for one a highly-ranked criteria would
warrant review. Possible causes for inconsistency by a single
stakeholder include data entry error on the form,
misunderstanding of the alternatives, or even intentional
misrepresentation to undermine the project. If many
stakeholders show inconsistency on a particular judgment, this
might indicate that there is little real differentiation among the
alternatives.

IV. A SHORTER METHOD

The output of the modeling process, and the subsequent AHP
prioritization, serve as inputs to our decision ranking tool,
SHORT [11]. Fig. 4 shows the methodology. Inputs are the
softgoal model from Section II, including cost/benefit values
from the stakeholders, and the preferences elicited from AHP. A
search-based algorithm evaluates potential combinations of
decisions according to a) decision cost; b) decision benefit and
preference satisfaction; c) softgoal satisfaction. This results in a
set of optimal (non-dominated) solutions.

Fig. 4. End-to-end method

This heuristic search-based approach scales better than
complete approaches, particularly when there are cross-tree
relationships in the goal model, as discussed in [11].

A Bayesian ranker produces a list of key decisions (Fig. 5).
Conceptually, the ranking is based on the probability that a
decision appears in a particular solution, given that the solution
is optimal. Details are provided in [11]. These are the decisions
which account for the majority of the variance in the decision
value space, i.e., making the top 3 decisions below accounts for
the majority of the cost/benefit/satisfaction value. Note that each
decision includes the decision state (do or do not, as discussed
above in Section II).

V. DYNAMIC ASPECTS OF DECISIONS

One of the characteristics of the work we have described in
this paper is that it focuses on a relatively static picture of the
world. Decisions are abstract representations of an ideal
software system. In more recent work, we have been using the
notion of ongoing, dynamic analysis of software-in-use to
inform our assessment of the design options. This is particularly
important in the emerging ‘intelligent, connected’ software
systems [15]. There, the challenge will be to understand how the
decisions an organization makes affect, and are affected by,
external components. Our approach investigates dynamic
configuration mechanisms such as dependency
injection/inversion of control to understand how these impact
architectural decisions. Consider the modules in Fig. 4. We may
have created links between modules A and B, and C and A, and
be able to understand these with the SHORT approach.
However, run-time analysis informs us of the dynamic
dependency between B and C, which introduces a cycle,
possibly reducing modularity. We are working to bring this type
of run-time analysis into our decision-making approach.

Rank Node Label Support
1 J2EE Specification ON 0.129
2 Pnp Framework OFF 0.124
3 New Database OFF 0.115
4 Documentation Tool ON 0.114
5 Access Control Assessed ON 0.113
6 Monitoring Pilot ON 0.112
7 General Test Env ON 0.110
8 Bakeoff Result ON 0.110
9 Access Control Pilot ON 0.108
10 DB Vendor Test Env ON 0.105
1 Data Service Spec ON 0.099
12 External clients get their request ON 0.098
13 XXX coordinates & internal client ON 0.098
14 XXX coordinates & external client ON 0.097
15 Data Model Pilot ON 0.095
16 Data Service Pilot ON 0.095
17 2 Tier ON 0.094
18 3 Tier ON 0.090
19 Define data model for shared data ON 0.085
20 Svc layer w/ extracted biz logic OFF 0.080
21 Define ext mandatory data std ON 0.079
22 Svc layer w/ extracted biz logic in DB_|ON 0.066
23 External data model can be extended |ON 0.062
24 Provide logical data scheme internally |ON 0.052

Fig. 5. Ranked decisions

static —»

----dynamic --%

Fig. 6. Static, compile-time vs dynamic, run-time dependencies

VI. RELATED WORK

Tofan et al. reported on a tool to increase consensus in group
architecture decision making [14]. Key differences compared to
that method are our support of asynchronous judgments (no
meeting required) and allowing preferences to be reported
anonymously or attributed, to match the culture and policy of the
organization.

Research in requirements prioritization covers some of the
same territory. Karlsson et al. [8] analyzed six prioritization
approaches and concluded AHP was most useful. Similarly,
Achimugu et al. [1] also found AHP most used, but suffering
from scalability challenges. Our notion of “key” decisions can
alleviate this. Finally, like us, Pitangueira et al. [12] analyzed
search-based approaches to prioritization, including work on the
Next Release Problem [2]. In particular, they noted there was
relatively little work applying search-based techniques to
industry challenges, which we do here.

VII. CONCLUSIONS AND FUTURE WORK

We described a process for making software design
decisions using goal models and search-based decision ranking.
Our approach leverages light-weight stakeholder input to create
a simple model of the potential solutions, and uses AHP to
determine stakeholder preferences. The SHORT process then
finds the key decisions, which we use to greatly simplify the
design decisions that need consideration by the stakeholders in
the revised AHP process. As future work, we are expanding on
our work to include the dynamic decisions we identify from run-
time design analysis, and planning systematic validation of the
end-to-end method.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. [Distribution Statement A] This material
has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and

distribution. ATAM® is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University. DM-0004507

REFERENCES

[1] P. Achimugu, A. Selamat, R. Ibrahim, et al., “A systematic literature
review of software requirements prioritization research,” Information and
Software Technology, vol. 56, no. 6, pp. 568 - 585, 2014, doi:
10.1016/j.infsof.2014.02.001.

[2] AJ. Bagnall, V.J. Rayward-Smith, .M. Whittley, “The next release
problem”, Inform. Softw. Technol., 43 (14) (2001), pp. 883-890

[3] P. Clements, R. Kazman, and M. Klein, Evaluating Sofiware
Architectures: Methods and Case Studies. Addison-Wesley, 2002.

[4] N. A. Emst, A. Borgida, J. Mylopoulos, et al., “Agile Requirements
Evolution via Paraconsistent Reasoning,” in Proc. 24th Int. Conf. on
Advanced Inf. Systems Eng. (CAiSE 2012), Gdansk, Poland, 2012, pp.
382-397. doi: 10.1007/978-3-642-31095-9_25.

[5] N. A. Ernst, M. Popeck, F. Bachmann, et al,, “Creating Software
Modernization Roadmaps: The Architecture Options Workshop,” in Proc.
13th Working IEEE/IFIP Conf. on Sofiware Architecture
(WICSA/CompArch 2016), Venice, Italy, 2016. doi:
10.1109/WICSA.2016.39.

[6] P.T. Harker, “Incomplete pairwise comparisons in the analytic hierarchy
process,” Mathematical Modelling, vol. 9, no. 11, pp. 837 - 848, 1987,
doi: 10.1016/0270-0255(87)90503-3

[7]1 L J. Jureta, A. Borgida, N. A. Ernst, J. Mylopoulos, “Techne: Towards a
New Generation of Requirements Modeling Languages with Goals,
Preferences, and Inconsistency Handling,” in [EEE Int. Requirements
Eng. Conf. (RE), Sydney, NSW, Australia, 2010, pp. 115-124. doi:
10.1109/RE.2010.24.

[8] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of methods for
prioritizing software requirements,” Information and Software
Technology, vol. 39, no. 14, pp. 939 - 947, 1998, doi: 10.1016/S0950-
5849(97)00053-0.

[91 M. Kassab and N. Kilicay-Ergin, “Applying analytical hierarchy process
to system quality requirements prioritization,” Innovations in Systems and
Software Engineering, vol. 11, no. 4, pp. 303-312, December 2015, doi:
10.1007/s11334-015-0260-8.

[10] A. van Lamsweerde. “Goal-oriented requirements engineering: a guided
tour”. International Conference on Requirements Engineering, Toronto,
ON, pages 249-263, 2001.

[11] G.Mathew, T. Menzies, N. A. Ernst, et al., “SHORTER Reasoning About
Larger Requirements Models,” (In Review), 2017,
https://arxiv.org/abs/1702.05568

[12] A. M. Pitangueira, R. S. P. Maciel, and M. Barros, “Software
requirements selection and prioritization using SBSE approaches: A
systematic review and mapping of the literature,” Journal of Systems and
Software, vol. 103, pp. 267 - 280, 2015, doi: 10.1016/j.jss.2014.09.038.

[13] R. W. Saaty, “The analytic hierarchy process---what it is and how it is
used,” Mathematical Modelling, vol. 9, no. 3--5, pp. 161 - 176, 1987, doi:
10.1016/0270-0255(87)90473-8.

[14] D. Tofan, M. Galster, 1. Lytra, et al., “Empirical evaluation of a process
to increase consensus in group architectural decision making,”
Information and Software Technology, vol. 72, pp. 31-47, 2016, doi:
10.1016/j.infsof.2015.12.002.

[15] E. Woods. “Software architecture in a changing world”. IEEE Software,
33(6):94-97, Nov 2016.

