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Abstract 

This report summarizes how to systematically analyze a software architecture with respect to a 
quality attribute requirement for robustness. The report introduces the quality attribute of robust-
ness and common forms of robustness requirements for software architecture. It provides a set of 
definitions, foundational concepts, and a framework for reasoning about robustness and the satis-
faction of robustness requirements by an architecture and by a system that realizes the architec-
ture. It describes a set of architectural mechanisms—patterns and tactics—that are commonly 
used to satisfy robustness requirements. It also provides a set of steps that an analyst can use to 
determine whether an architecture documentation package provides enough information to sup-
port analysis and, if so, to determine whether the architectural decisions made contain serious 
risks relative to robustness requirements. An analyst can use these steps to determine whether 
those requirements, represented as a set of scenarios, have been sufficiently well specified to sup-
port the needs of analysis. The reasoning around this quality attribute should allow an analyst, 
armed with appropriate architectural documentation, to assess the robustness risks inherent in to-
day’s architectural decisions, in light of tomorrow’s anticipated needs. 
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1 Goals of This Document  

This document serves several purposes. It is 
• an introduction to the quality attribute of robustness and common forms of robustness re-

quirements 
• a description of a set of mechanisms—patterns and tactics—that are commonly used to satisfy 

robustness requirements 
• a means for an analyst to determine whether an architecture documentation package provides 

enough information to support analysis and, if so, to determine whether the architectural deci-
sions made contain serious risks relative to robustness requirements 

• a means for an analyst to determine whether those robustness requirements, represented as a 
set of scenarios, have been sufficiently well specified to support the needs of analysis 

This document is one in a series of documents that, collectively, represent our best understanding 
of how to systematically analyze an architecture with respect to a set of well-specified quality at-
tribute requirements [Kazman 2020a, 2020b]. The purpose of this document, as with all the docu-
ments in this series, is to provide a workable set of definitions, core concepts, and a framework 
for reasoning about quality attribute requirements and their satisfaction (or not) by an architecture 
and, eventually, a system. In this case, the quality attribute under scrutiny is robustness. The rea-
soning around this quality should allow an analyst, armed with appropriate architectural documen-
tation, to assess the risks inherent in today’s architectural decisions in light of tomorrow’s 
anticipated tasks. 

There are several commonly used and documented views of software and system architectures 
[Clements 2010]. The Comprehensive Architecture Strategy, for example, proposes four levels of 
architecture, each of which may be documented in terms of one or more views [Padilla 2019]: 
1. functional architecture: The Functional Architecture provides a method to document the 

functions or capabilities in a domain by what they do, the data they require or produce, and 
the behavior of the data needed to perform the function. 

2. hardware architecture: A Hardware Architecture specification describes the interconnection, 
interaction and relationship of computing hardware components to support specific business 
or technical objectives. 

3. software architecture: A Software Architecture describes the relationship of software compo-
nents, and the way they interact to achieve specific business or technical objectives. 

4. data architecture: A Data Architecture provides the language and tools necessary to create, 
edit, and verify Data Models. A Data Model captures the semantic content of the information 
exchanged. 

The focus of this document is almost entirely on the software architecture because a software ar-
chitecture is the major carrier of and enabler of a system’s driving quality attributes. And since 
software typically changes much more frequently than hardware, it is often the focus of mainte-
nance effort. There will, however, be implications of architectural decisions made on each of the 
other views. 
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In addition, other important decisions within a project will impact robustness—or any other qual-
ity attribute, for that matter. Even the best architecture will not ensure success if a project’s gov-
ernance is not well thought out and disciplined; if the developers are not properly trained; if 
quality assurance is not well executed; and if policies, procedures, and methods are not followed. 
Thus, we do not see architecture as a panacea but rather as a necessary precondition to success, 
and one that depends on many other aspects of a project being well executed. 

As we will show, there is not one single way to analyze for robustness. One can (and should) ana-
lyze for robustness at different points in the software development lifecycle, and at each stage in 
the lifecycle this analysis will take different forms and produce results accompanied by varying 
levels of confidence. For example, if there are documented architecture views but no implementa-
tion, the analysis will be less detailed and there will be less confidence in the results than if there 
were an existing implementation that could be scrutinized, tested, and measured. We will return to 
this issue of types of analysis and confidence in their outputs several times in this document. 
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2 On Robustness 

Robustness has traditionally been thought of as the ability of a software-intensive system to keep 
working, consistent with its specifications, despite the presence of internal failures, faulty inputs, 
or external stresses, over a long period of time. Robustness, along with other quality attributes 
such as security and safety, is a key contributor to our trust that a system will perform today and 
tomorrow in a reliable manner. In addition, the notion of robustness has more recently come to 
encompass a system’s ability to withstand changes in its stimuli and environment without com-
promising its essential structure and characteristics. In this latter notion of robustness, systems 
should be malleable, not brittle, with respect to changes in their stimuli or environments. As such 
it is a highly important quality attribute to design into a system from the start, as it is unlikely that 
any nontrivial system could achieve this quality without conscientious and deliberate engineering. 
This is why we are interested in understanding robustness and how it is supported by appropriate 
architectural decisions. 

This report begins with a survey of definitions for robustness. We introduce a set of quality attrib-
ute scenarios, including a general scenario, to define robustness requirements more precisely. 
This is followed by a discussion of the mechanisms that can be employed in a software architec-
ture to promote robustness. And we conclude with a discussion of the various ways that an analyst 
can analyze for robustness, focusing on analysis checklists and analysis models and methods. 

We create definitions for software and system quality attributes, like robustness, so that we can 
label and categorize quality requirements. These labels are then used by several groups during the 
development phase. Stakeholders and requirements engineers use the labels during requirements 
elicitation to create checklists, to assess coverage and completeness, and to collect similar require-
ments. This group is often concerned with why the software must be robust.1 A second group us-
ing the quality attribute labels is architects, who use the labels to identify the relevant parts of the 
design body of knowledge to help them choose and instantiate mechanisms that promote the de-
sired quality and satisfy the requirement. Finally, analysts and evaluators use the labels to choose 
methods to apply to validate and verify that the requirement is achieved. These latter groups are 
usually less concerned with the why of the requirement and more concerned with the scope and 
impact of what must be robust and constraints on how the robustness will be achieved. Also, these 
groups need enough precision in the requirement definition that it is actionable and verifiable.2 

How can we define robustness? As with many notions in software, we take inspiration and guid-
ance from more traditional areas of engineering. In civil engineering, for example, “robustness is 
taken to imply tolerance to damage from extreme loads or accidental loads, although the frame-
work here is applicable to other adverse effects such as sensitivity to human error and deteriora-
tion” [Baker 2008]. 

 
1  More formally, they are concerned that a requirement is necessary and appropriate [BKCASE 2018, Table 3]. 

2  More formally, they are concerned that the requirements are unambiguous, complete, and verifiable [BKCASE 
2018, Table 3]. 
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But robustness is certainly an important quality of software systems. Gerald Jay Sussman, in his 
essay “Building Robust Systems: An Essay,” defines robust systems as “systems that have ac-
ceptable behavior over a larger class of situations than was anticipated by their designers” [Suss-
man 2007]. He goes on to say that “the most robust systems are evolvable: they can be easily 
adapted to new situations with only minor modification.” Finally, and perhaps most troubling con-
sidering the subject of this report, he notes that “common practice of computer science actively 
discourages the construction of robust systems.” This is because 

[i]n software engineering we are taught that the “correctness” of software is para-
mount, and that correctness is to be achieved by establishing formal specification of 
components and systems of components and by providing proofs that the specifications 
of a combination of components are met by the specifications of the components and the 
pattern by which they are combined. I assert that this discipline enhances the brittle-
ness of systems. In fact, to make truly robust systems we must discard such a tight disci-
pline. [Sussman 2007] 

A literature survey reviewed approaches to software robustness [Shahrokni 2013], and this term 
(and related terms such as “dependability” [Avizienis 2001]) also appears in quality attribute tax-
onomies such as that of the International Organization for Standardization (ISO) [ISO/IEC 2011]. 
However, the definitions used in these taxonomies are somewhat broad and the terminology var-
ies. While ISO 25010(E) does not define robustness, it does define reliability as the “degree to 
which a system, product or component performs specified functions under specified conditions for 
a specified period of time.” This concept is closely related to the following concepts:  

• maturity: degree to which a system, product or component meets needs for relia-
bility under normal operation 

• availability: degree to which a system, product or component is operational and 
accessible when required for use 

• fault tolerance: degree to which a system, product or component operates as in-
tended despite the presence of hardware or software faults 

• recoverability: degree to which, in the event of an interruption or a failure, a 
product or system can recover the data directly affected and re-establish the de-
sired state of the system [ISO/IEC 2011] 

Similarly, the SWEBOK (Guide to the Software Engineering Body of Knowledge) [SWEBOK 
2014] does not mention robustness at all, but it does mention several related terms such as relia-
bility and fault tolerance. Avizienis and colleagues define robustness as “dependability with re-
spect to erroneous input” [Avizienis 2001]. 

Synthesizing these definitions, we can make some statements about robustness as a quality attrib-
ute. A system is “robust” if it 
1. has acceptable behavior in normal operating conditions over its lifetime 
2. has acceptable behavior in stressful environmental conditions (e.g., spikes in load)  
3. can recover from or adapt to states that are outside its proper operating specification 
4. can evolve and adapt to changes in its environment and stimuli with only minor changes 

The fourth point deserves some elaboration. Ideally a robust system can handle changes in its en-
vironment and stimuli that we cannot anticipate. If a system needs to be easily extended—such as 
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to accommodate new data sources, new data types, and new sensors—then it can be said to be ro-
bust with respect to those stimuli. If a system scales linearly with spikes in demand with little ef-
fect on latency or throughput, then it can be said to be robust with respect to those spikes. If a 
system can accommodate changes in its environment—perhaps a platform upgrade—with rela-
tively little expenditure of time and effort, and with few new bugs generated, it can be said to be 
robust with respect to that kind of maintenance stimulus. But each of these kinds of robustness in-
volves other quality attributes—extensibility, performance, and maintainability. Robustness, 
viewed in this expansive way, potentially cuts across all quality attributes and is really the sys-
tem’s ability to respond appropriately in the face of changing requirements and environments. 
Thus, this notion of robustness is not localized to a single quality attribute. While these notions of 
robustness are clearly important, they are not the focus of this report. 

Finally, while the definitions of robustness provided above are helpful and provide context and 
scope for a robustness requirement, they do not have any criteria for satisfaction. For example, 
while the definitions suggest that it is important to measure robustness, they do not specify any 
specific measures. How can we say that one architecture is more robust than another? How can 
we say that an architecture is sufficiently robust? Further, the definitions do not distinguish among 
robustness challenges. For any system, some operating conditions will be easy to deal with, while 
others will be more difficult. Thus, these definitions allow us to talk about robustness in general, 
but to specify requirements for robustness we need a more precise definition. 

In the field of software quality attributes, we can use quality attribute scenarios to create opera-
tional definitions. The next section defines quality attribute scenarios for the quality attribute of 
robustness.  
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3 Evaluating the Robustness of an Architecture 

While we can precisely evaluate the robustness of an existing implementation of an architecture—
by examining its bugs, faults, and failure history—we do not have this historical record when 
evaluating new architectures. Thus, we must analyze and evaluate new architectures in terms of 
their discernable characteristics. We use concrete scenarios to guide this analysis.3 

We cannot precisely evaluate the robustness of an architecture any more than we can evaluate its 
performance, availability, or integrability. All quality attribute names are categories, and catego-
ries are too imprecise to be used for evaluation. Thus, we are better served by speaking of and 
measuring the robustness of an architecture, or a major subsystem, with respect to a set of antici-
pated and unanticipated faults or failures. And we specify these as scenarios. We will define a set 
of robustness scenarios in Section 4 as examples of the kinds of faults or failures that a system 
might be subjected to, and we will use these scenarios in our architecture analysis playbook (in 
Section 7).  

To understand what it means to measure the robustness of a system, we need to understand the 
things that are involved in detection and recovery from faults and failures. To this end, we have 
surveyed the techniques that the software engineering research literature has proposed for robust-
ness.  

It is important to reiterate that while we restrict our attention in this section to analyzing architec-
tural information for robustness, historically robustness analyses have focused on richer sets of 
information derived from a project’s logging, health monitoring, error handling, and history. The 
advantage of these richer sets of information is that we can potentially create more precise anal-
yses. The disadvantage is that, to acquire such rich information, we need to build, deploy, and ac-
tually observe the system. At that point it can be very expensive and time consuming to mitigate 
problems relating to robustness. Thus, our objective in analyzing an architecture for robustness is 
to find a sweet spot wherein we can gain insight into the potential robustness characteristics of a 
system before much, if any, code has been committed. 

3.1 Measuring Robustness 

When considering the robustness of a system, we must consider not only how resistant it is to fail-
ure but also the support that it provides to detect and recover from failures. Thus, we typically 
consider several system-level measures of robustness such as 
• mean time between failures (MTBF) – a prediction, based on historical data, of how much 

time can be expected to elapse between system failures 
• mean time to repair (MTTR)/estimated time of repair (ETR) – the time from a failure to 

when the system is once again operating according to its service-level agreement 

 
3  In this report we primarily focus on the aspects of robustness dealing with failures. For the aspects of robust-

ness dealing with future changes, see the sidebars on “Designing for Unknown Unknowns” and “Architecting for 
the Unknown with Growth and Exploratory Scenarios” in Section 4, as well as the sidebar on “Assessing Brittle-
ness” in Section 7. In addition, this topic is addressed in our technical report Maintainability [Kazman 2020b]. 
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• availability/uptime percentage (the “nines”) – a measure of the orders of magnitude of a sys-
tem’s predicted uptime 

But these measures only give insight into the overall behavior of the system, from a robustness 
perspective. We can refine such measures into a more detailed set of questions about a system’s 
architecture. Consideration of such questions and their measures, and analysis of the architectural 
decisions that led to those measures, can lead to improved architectures. 

A set of architectural robustness concerns, the questions related to those concerns, and potential 
measures that shed light on each of these questions are summarized in Table 1. 

Table 1: Robustness Concerns, Questions, and Example Measures 

Concern Supporting Questions  Example Measure 

Prevention of 
faults or fail-
ures 

How many components have criti-
cal operational thresholds defined 
and monitored? 
Does the system provide predictive 
modeling for thresholds (e.g., re-
source utilization)? 
Does the software use mature 
components that are known to be 
reliable? 
Does the system use hardware 
components that are known to be 
reliable?  

• Software MTBF 
• Hardware MTBF 
• Number of false positives for predictive analysis 
• Number or percentage of faults masked by detecting 

when the system is close to failure threshold 

Does the system quarantine unan-
ticipated requests or bad inputs?  

• % of confirmed unanticipated requests and invalid in-
puts quarantined 

Does the system support retry? • Number of retries needed or allowed 
• Percentage of operations or requests that need re-

tries 
• % of retries successful 

Detection of 
faults, error 
conditions, un-
safe operating 
conditions  

How many critical components can 
be monitored? 

• % of system components that are monitored 
• % of components that support runtime diagnostics 

How effective is the monitoring? • % of system faults or failures that are detected 
• Time to detect fault or failure or mean time to dis-

cover (MTTD) 
• Number of false positives 

How complete is the fault modeling 
(e.g., failure modes and effects 
analysis [FMEA])? 

• Number of fault types identified 
• Number of fault types with detection mechanism and 

recovery strategies defined 
• % of anticipated faults that have explicit error han-

dling 

What confidence do you have in 
detection, self-test, or voting?  

• % of tests that produce correct/incorrect results at 
runtime 

Recovery from 
faults 

How do you restart failed nodes? 
Does the system support failover? 
Does the system support rollback 
to safe states? 

• MTTR 
• System uptime and downtime 
• Failover time 
• Failover success rate 

Does the system support degraded 
modes? 

• Time spent in degraded mode of operations 
• % of time spent in degraded modes 
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3.2 Reasoning About Robustness Properties 

For a large, complex software-intensive system to be robust, its architecture will typically support 
a mix of capabilities to detect and recover from failures, and it will typically contain redundant 
(backup) resources that can be invoked in the case of a failure of a “live” resource. When evaluat-
ing an architecture with respect to robustness, we need to assess the design decisions in an archi-
tecture that lead to robustness. That is, we need to understand how well the architecture has been 
designed with sufficient resources to withstand failures of individual system elements. And we 
need to further understand how the architecture has been designed to monitor and manage these 
resources.  

Thus, we need to gauge the degree to which the architecture supports the following strategies: 
• management of system resources, which we categorize into two main approaches:4 

− capacity sparing: providing more resources than what is strictly necessary to accomplish 
the system’s functions, where some of these resources act as spares to replace failed re-
sources. There are three main approaches to achieve this: 
 hardware redundancy – We would like to understand the degree to which portions of 

the hardware architecture are protected by some sort of backup or redundant capa-
bility.  

 software redundancy – Similarly such redundant capabilities may be spare pro-
cesses, threads, containers, virtual machines, and so forth that can be used in case of 
a failure of the active component. We would like to understand the degree to which 
and ease with which software components can be replaced. 

 analytic redundancy – A special case of software or hardware redundancy worth 
calling out is analytic redundancy [Bodson 1994, Sha 1998], where a complex com-
ponent is mirrored by a simpler one that provides reduced, but more robust, func-
tionality. For example, manual steering is analytically redundant to power steering 
in automobiles. We seek to understand which system functions have analytic spares 
to protect them in case of failure. 

− capacity management: what functions to allocate to which resources 
 growth potential: ease of adding capacity 
 ease of matching system resources to tasks (e.g., matching a task’s resources to a 

suitable execution environment) and the ease with which a task can be moved 
around (dynamically or statically) 

• management of system state, which has two approaches [Binder 2000]: 
− state observability – We would like to understand the degree to which it is possible to 

examine critical properties of the system’s state such as memory and storage usage, pro-
cessor utilization, liveness of processes and processors, communication channel utiliza-
tion, latency, and transaction volume. These properties need to be observed and 
monitored because when such properties attain or exceed threshold or critical values, 
this is an indicator of a potential or actual fault. Thus, we need to determine what state 
properties are visible and what we can infer from these properties. 

 
4  We conceive of approaches as generalizations of tactics, which we describe in Section 5.1. 
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− state controllability – Coupled with state observability is state controllability. Given that 
we are able to observe the state of the system, for the system to be truly robust we must 
also be able to control that state, for example, by restarting bad processes, clearing 
memory, switching from a primary processor to a backup processor, choosing a level of 
service for a component, and choosing which components are active and which ones are 
passive or standby. Thus, we need to determine what state properties are controllable and 
what kinds of control we can we exert. 

Different scenarios will of course emphasize these approaches to different degrees. For example, 
detecting that memory is nearly full and instituting garbage collection involves state observability 
(examining current memory usage) and state controllability (putting the process into the garbage 
collection mode). Consider another scenario involving detecting a database failure and replacing it 
with its hot spare (a “mirror”). This scenario relies on being able to observe that the primary data-
base has failed and on being able to control system state—directing all database connections to its 
mirror (a redundant copy of the database).  

Analyzing for robustness, then, is about examining the mix of mechanisms selected for a set of 
robustness scenarios and predicting the percentage of faults and failures that can be observed (de-
tected), prevented, masked, and recovered from (potentially deploying spare capacity such as re-
dundant resources) to achieve system uptime requirements.  

Note that many of the measures of robustness in Table 1 cannot be estimated from architectural 
artifacts alone. Many of these measures can only be measured off of a built and deployed system. 
However, this does not mean that we can do no useful analysis of an architecture with respect to 
robustness. As we will show in our “Playbook” for architecture analysis in Section 7, even where 
a measure does not exist or cannot be reliably obtained, an architecture can still be examined for 
its fitness for purpose with respect to the questions and measures described in Table 1. 

3.3 Operationalizing the Measurement of Robustness 

Thus, when analyzing an architecture for robustness, we have some analysis tradeoffs to make. 
We can analyze with respect to a particular set of scenarios and obtain a reasonably precise under-
standing of the architecture’s accommodation of those scenarios. But that understanding is neces-
sarily narrow—limited to just those scenarios that we have considered. Alternatively, we can 
analyze with respect to metrics and get a broad understanding of the architecture’s overall level of 
predicted robustness—as measured by the metrics—but this gives us no insight into the specific 
risks involved in responding to specific scenarios. Furthermore, scenario-based analyses and de-
sign-level measures (like the degree of replication of critical resources) can be used to gain insight 
into a design. This insight therefore can be achieved before committing to an implementation. But 
precisely because these are measuring artifacts—like design specifications—that are created ear-
lier in a system’s lifetime, they may not accurately reflect the eventual state of the system. This 
more accurate level of knowledge can only be achieved by measuring the system in operation.  

For this reason, we recommend doing both: evaluating with respect to scenarios to get a deep un-
derstanding of some anticipated forms of robustness threats and, later in the lifecycle, adding 
analyses using measures from a system model or from the system in operation to obtain a more 
precise understanding of the qualities that the architecture (or any major subsystem within the ar-
chitecture) helps to realize. 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  10  
[Distribution Statement A] Approved for public release and unlimited distribution 

4 Robustness Scenarios 

As stated in the book Software Architecture in Practice, quality attribute names themselves are of 
little use, as they are vague and subject to interpretation. The antidote to this vagueness is to spec-
ify quality attribute requirements as scenarios [Bass 2012]. A quality attribute scenario is simply a 
brief description of how a system is required to respond to some stimulus. Quality attribute sce-
narios, different from use cases, are architectural test cases. That is, they provide insights into the 
qualities that the architecture supports and any risks associated with the fulfillment of these sce-
narios. 

A quality attribute scenario provides an operational definition of a quality of a system. The use of 
scenarios to specify quality attribute requirements for software dates back at least to 1994 [Kaz-
man 1994]. Published examples include scenarios to specify requirements for seven of the most 
commonly occurring quality attributes [Bellomo 2015]: availability, interoperability, modifiabil-
ity, performance, security, usability, and testability [Bass 2012]. More recently we have seen 
characterizations of the qualities of scalability and consistency [Klein 2015], integrability [Kaz-
man 2020a], and maintainability [Kazman 2020b]. 

A quality attribute scenario has six parts [Bass 2012]. The two most important parts are a stimulus 
and a response. The stimulus is some event that arrives at the system, either during runtime exe-
cution (e.g., an invalid message arrives on a particular interface) or during development (e.g., a 
development iteration completes). The response defines how the system should behave when the 
stimulus occurs. For example, in response to an invalid message arriving, the system should log 
the event and send an error response message. In response to a development iteration completing, 
the unit and integration tests should be run and the test results reported. 

The stimulus and response form the core of our operational definition by specifying the operation 
that we will measure. The third part of a scenario, the response measure, defines how we will 
measure the response and the satisfaction criteria. The response measure includes a metric and a 
threshold. 

The other three parts of the scenario provide more details. We specify the source of the stimulus, 
to provide context for the scenario. We also specify the environment, which is the conditions un-
der which the stimulus occurs and the response is measured. Finally, we specify the artifact, 
which is the portion of the system to which the requirement applies. Often, the artifact is the entire 
system, but in the example above, we might treat invalid messages on external interfaces differ-
ently from invalid messages on internal interfaces. 

During requirements elicitation, we may specify the parts of a scenario in any order. We often 
begin with stimulus and response, although environment, source, or artifact may be the initial trig-
ger for the requirement. In any case, once the scenario is specified, we usually arrange the parts to 
tell a story, as shown in Figure 1. 
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Figure 1: The Form of a General Scenario 

In this way, the quality of the architecture, including measures that reflect on its robustness, can 
be continuously tracked and assessed. And if changes are made that undermine some architectural 
characteristic, the test case fails and appropriate remedial action can be taken. 

Sidebar: Scenarios as Architectural Test Cases 

In architecture analysis, scenarios are “architectural test cases.” We use them to determine 
whether the architecture—as envisioned or as created—is consistent with its specification. 
Before the system is built, we use scenarios to assess the quality of the architectural deci-
sions. Once the system exists, we can continue to use scenarios to assess the quality of the 
architecture as it evolves.  

For runtime quality attributes, scenarios may become much more than simply guides for ana-
lysts. They can be used as acceptance tests and made part of the regression test suite. Or they 
can even be manifested as system health measures that are logged or monitored continuously at 
runtime. If the checks are at runtime, checking can be built into a system monitor; if the checks 
are run at build time, checking can be built into a continuous integration pipeline. In either 
case, checking requires appropriate visibility into system response measures (e.g., the ability to 
track latency, resource usage, and mean time to failure [MTTF]). For non-runtime quality at-
tributes (assuming that source code is available), we can monitor the quality or degradation of 
the architecture’s modular structure via architecture analysis tools, or we can monitor project 
management measures of the effort required to make changes. 

4.1 General Scenario for Robustness 

As we noted in the previous section, operational definitions are not exclusive: There is not a sin-
gle scenario that specifies all the possible measurements that could characterize a quality like ro-
bustness. However, if we look at the definitions of robustness, we find some common themes. A 
general scenario maps those common themes into the parts of a quality attribute scenario, provid-
ing a template that we can use to create concrete scenarios for a particular system. The general 
scenario defines the type of the values for each part of the scenario, and a concrete scenario for 
robustness of a system is created by specifying one or more system-specific values of the selected 
type for each part of the scenario. (We say values—plural—because, for example, a scenario 
might have more than one response measure.) 
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Here is the general scenario for robustness:5 

Scenario Part Possible Type for Each Value 

Source Software, external system, or hardware 

Stimulus One of the following: 
• Software fault or failure 
• Hardware failure 
• Unanticipated message 
• Spike in demand 
• Invalid input 
• Diagnostic test fails 
• Unresponsive component 
• Responds after deadline 
• Defined threshold (e.g., processor utilization) 

Artifact One of the following: 
• Single software element 
• Multiple software elements 
• Hardware element 
• Entire software system 

Environment One of the following: 
• Normal operations 
• Degraded modes 

Response One or more of the following: 
• Fault detected and administrators notified 
• System operates in degraded mode 
• Fault detected, logged, and reported 
• Fault repaired 
• Fault prevented, logged, and reported 
• Diagnostics completed 

Response 
Measure 

One or more of the following: 
• MTTD 
• MTTR 
• Percentage uptime 
• Failover time 
• Uptime 
• % messages delivered 
• % of responses received 

4.2 Example Scenarios for Robustness 

Each of the following example scenarios is constructed by selecting one or more of the types of 
values from each of the six parts of the general scenario and specifying a system-specific value. 
For each example, we will use an easy-to-understand “typical” system. In practice, you would 
choose values that are as precise as possible, in the context of your system. In each example, notes 

 
5  This general scenario is adapted from Bass and colleague’s general scenario for modifiability [Bass 2012, §7.1]. 
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in square brackets are added to trace back to general scenario types in cases where the traceability 
is not obvious. 

Sidebar: Architecting for the Unknown with Growth and Exploratory Scenarios 

As we will discuss in Section 5, a great challenge of building robust systems is architecting for 
the unknown. Since we cannot enumerate all possible future changes or failure conditions, we 
cannot create architectural responses to all unknowns. And even if we could, the time to com-
plete a project would grow enormously, and the cost/benefit ratio of architecting for less and 
less likely failures and changes would shrink to vanishingly small. So what is the prudent archi-
tect or analyst to do? 

We advocate employing growth and exploratory scenarios as a means of exploring the space of 
conditions that we want to explicitly consider in our architecture design and analysis process. 
Growth scenarios represent anticipated growth and anticipated stresses on a system. For exam-
ple, if we know based on our history that we are likely to add sensors to the system on a regular 
basis, we can create a growth scenario that captures this anticipated future change in require-
ments.  

Exploratory scenarios are ideally used to ask “what if” questions, to help probe our understand-
ing of more extreme potential changes and more extreme environmental conditions. What 
would happen if all our processors failed simultaneously? How much work would be required 
to change the architecture to manage tighter coordination among system instances? What 
would happen if our backup network failed shortly after our main network failed? What would 
happen if we needed to report updates every second instead of reporting them hourly? What 
would happen under conditions of extreme heat, extreme load, or extreme growth in user re-
quests? These kinds of scenarios, while perhaps unlikely, help us understand the limits of our 
architecture and the tradeoffs that have been made. They can also be used with respect to any 
quality attribute, such as in evaluating the robustness of an architecture to future security or 
maintainability requirements. As such they are a crucial tool in the toolbox of the designer and 
the analyst. 

Collectively, growth and exploratory scenarios allow architects or analysts to explore the ro-
bustness of an architecture with respect to future changes or failure conditions that fall outside 
of current requirements but are perhaps more likely than not to become future requirements. 
Growth and exploratory scenarios aren’t a panacea for the unknown though, as they still require 
someone to think of potential changes or failure conditions prior to making architectural deci-
sions or evaluating an architecture. 
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4.2.1 Scenario 1: System Initialization Times Out 

This example scenario describes how failure can be detected and recovered from, for system ini-
tialization of a networked avionics system such as a navigation system. 

Scenario Part Value 

Source Navigation System initialization configuration file errors 

Stimulus Navigation System initialization times out. 

Artifact Navigation System initialization component  

Environment Normal operations 

Response The timeout is detected, and the system is initialized using a standard configura-
tion.  

Response  
Measure 

Timeout is detected 100% percent of the time. 
System initialization is restarted within 10 ms. 

Note that in this scenario—as in many scenarios—multiple response measures are specified. Fur-
thermore, in some cases, multiple scenarios are needed to completely specify the quality attribute 
requirement. For instance, the environment in the example scenario above was normal operations, 
and one of the responses was to reinitialize using a standard configuration. Another scenario, with 
identical stimulus and response measures, might specify an environment of the system being re-
started in a degraded mode, and the response measure for restarting the system initialization could 
be changed to 20 ms. 

4.2.2 Scenario 2: Software Fault and Recovery 

This example scenario describes the robustness of the Flight Management System to recover from 
the failure of a software element.  

Scenario Part Value 

Source RADAR Altimeter Manager 

Stimulus RADAR Altimeter Manager does not report sensor data by deadline. 

Artifact Flight Management System 

Environment Normal operation 

Response Restart RADAR Altimeter Manager. 
Detect fault. 
Log error. 
Failover to backup. 

Response  
Measure 

Detect fault within 2 ms. 
Restart within 10 ms. 
Switch to backup in 5 ms. 
Altimeter data is available 100% of operation. 
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4.2.3 Scenario 3: Resource Threshold Is Approached 

This example scenario describes how the system responds when a critical system resource is near 
its capacity. 

Scenario Part Value 

Source Processor Monitor 

Stimulus Total CPU utilization is at 85%. 

Artifact Flight Management System 

Environment Normal operation 

Response Disable noncritical functions or message throttling. 
Detect fault. 
Log error. 

Response  
Measure 

Detect fault within 2 ms. 
Restart within 10 ms. 
All critical deadlines are met.  

4.2.4 Scenario 4: Hardware Failure and Restart 

This example scenario describes how the system responds when a critical system resource fails. 

Scenario Part Value 

Source Processor Monitor 

Stimulus CPU overheats and shuts down. 

Artifact Flight Management System 

Environment Normal operation 

Response Failover to other CPUs (hot spare). 
Detect fault. 
Log error.  

Response  
Measure 

Detect fault within 2 ms. 
Restart within 10 ms. 
All critical deadlines are met.  

 

 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  16  
[Distribution Statement A] Approved for public release and unlimited distribution 

5 Mechanisms for Achieving Robustness 

We have thus far focused most of our attention on analyzing an architecture for robustness. But 
analysis and design are two sides of the same coin. Now we turn our attention to the architectural 
design task of achieving robustness.  

An architect must choose a set of design concepts to construct a solution for any quality attribute 
requirement [Cervantes 2016], and the architecture that the analyst is given to examine will con-
tain design decisions regarding such concepts. Here we generically refer to these design concepts 
as “mechanisms.” We will discuss and provide examples of two important kinds of architectural 
design mechanisms: tactics and patterns. These mechanisms are the architect’s main tools to 
achieve a desired set of robustness characteristics. 

5.1 Tactics 

A mechanism is an architectural approach that we can take to control a quality attribute. Many 
discussions of mechanisms—for example, Bass and colleagues [Bass 2012]—focus on technical 
mechanisms, such as architectural patterns and tactics. Technical mechanisms are sufficient to sat-
isfy requirements for quality attributes such as availability or consistency in a big data system. For 
other quality attributes such as security and robustness, technical mechanisms are necessary but 
not sufficient to satisfy some system-level requirements, and the technical mechanisms must be 
accompanied by governance mechanisms. For example, security defense-in-depth might begin 
with physical security, which requires governance to enforce access procedures. For robustness, 
any modification to the software will be extremely difficult without governance such as acquisi-
tion practices that ensure that appropriate architecture, design, and code documentation are pro-
duced, that code reviews are performed, that test suites are maintained, and that employees are 
appropriately trained so that they do not undermine the integrity of the architecture with the 
changes they implement.  

Governance mechanisms related to robustness in the Department of Defense (DoD) context ap-
pear in discussions of the Modular Open System Approach (MOSA) [ODASD 2017] and DoD 
software acquisition practices [DIB 2019]. The rest of this section focuses on technical mecha-
nisms for robustness: Architecture approaches are commonly employed to satisfy the types of sce-
narios that we outlined in the previous section. 

In practice, the terminology used for technical mechanisms is informal, and often the term is used 
to refer to any decision made during the architecture design process or to any fragment of the ar-
chitecture that is intended to address some particular functional or quality attribute-related con-
cern. In this report, we will consider two specific types of mechanisms: 
• Architectural Patterns. Design patterns are conceptual solutions to recurring design problems 

that exist in a defined context. A pattern is architectural when its use directly and substan-
tially influences the satisfaction of an architecture driver such as a quality attribute scenario 
[Cervantes 2016]. An architectural pattern defines a set of element types and interactions; the 
topological layout of the elements; and constraints on topology, element behavior, and inter-
actions [Bass 2012]. 
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• Architectural Tactics. Tactics are smaller building blocks of design than architectural pat-
terns, focused on a single element or interaction, in contrast to a pattern that defines a collec-
tion of elements [Bass 2012].  

Since tactics are simpler and more fundamental than patterns, we begin our discussion of mecha-
nisms for robustness with them. Tactics are the building blocks of design, the raw materials from 
which patterns, frameworks, and styles are constructed. Each set of tactics is grouped according to 
the quality attribute goal that it addresses. The goals for the robustness tactics shown in Figure 2 
are to enable a system, in the face of a fault, to prevent, mask, or repair the fault so that a service 
being delivered by the system remains compliant with its specification. The tactic descriptions 
presented below are derived, in part, from the third edition of Software Architecture in Practice 
[Bass 2012]. We discuss each of the tactics presented in Figure 2 in more detail below. For each 
tactic that we discuss, we not only describe the tactic but also relate it to the measures described in 
Section 3.1 as a way of describing the intent and impact of the tactic. 

 

Figure 2: Robustness Tactics 

These tactics are known to influence the responses (and hence the costs) in the general scenario 
for robustness (e.g., number of components affected, effort, calendar time, new defects intro-
duced). Table 2 summarizes the tactics presented in this section, and how each relates to the char-
acteristics and measures presented in Sections 3.1 and Figure 2. The table assesses the 
relationships between the availability (robustness) tactics and the architectural approaches of ca-
pacity sparing, capacity management, state observability, and state controllability, each of which 
can contribute to achieving higher measures of MTTF and MTTR. An architect, in designing for 
high availability, needs to make decisions to 
• provision spare capacity (including, in most cases, providing for backup resources) 
• manage the capacity of the resources that are available 
• observe the state of the system to determine when the system, or some part of it, is incon-

sistent with respect to its specification 
• control the state of the system to keep the system alive and healthy, consistent with its specifi-

cation 
By consciously managing these system strategies and concerns, the architect can design to reduce 
the likelihood of a failure, thus increasing the MTTF measure, or to recover from failures more 
quickly, thus reducing the MTTR measure.  
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Table 2: Robustness Tactics and Their Relationships to Architectural Approaches and Measures of 
Interest 

Tactic Architectural Approaches Measures 

 Capacity 
Sparing 

Capacity 
Mgmt. 

State 
Observ. 

State 
Control. 

MTTF MTTR 

Monitor    +   + 

Ping/Echo   +   + 

Heartbeat   +   + 

Timestamp   +   + 

Condition Monitoring   +   + 

Sanity Checking   +   + 

Voting   +   + 

Exception Detection   +   + 

Self-test   +   + 

Active Redundancy +    + + 

Passive Redundancy +    + + 

Spare  +     + 

Rollback    +  + 

Exception Handling    +  + 

Software Upgrade    +  + 

Retry    + + + 

Ignore Faulty Behavior    + * + 

Graceful Degradation  +  + * * 

Reconfiguration + +  + * * 

Shadow    +  + 

State Resynchronization    +  + 

Escalating Restart    +  + 

Non-stop Forwarding  +  + * * 

Removal from Service +   + +  

Transactions    + + + 

Predictive Model   +  +  
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Tactic Architectural Approaches Measures 

 Capacity 
Sparing 

Capacity 
Mgmt. 

State 
Observ. 

State 
Control. 

MTTF MTTR 

Exception Prevention    + +  

Increase Competence Set    + +  

Note: A plus sign indicates that the tactic positively addresses maintainability properties and hence measures, and 
an asterisk indicates that the tactic might positively or negatively address the measure, depending on its realization. 
A blank cell means that the property has no consistent effect on the measure. 

Sidebar: Designing for Unknown Unknowns 

Many of the robustness tactics are employed because we acknowledge that faults in parts of the 
system are a normal occurrence; hence we can architect to detect and recover from those faults, 
increasing the likelihood that faults do not become failures. But these tactics are primarily 
aimed at recovering from known, anticipated faults. Several of the robustness tactics presented 
below are, however, particularly helpful in considering how to deal with problems that we can-
not anticipate—the so-called unknown unknowns. These tactics include rollback, ignore faulty 
behavior, abort, analytic redundancy, masking, and return to safe state.  

Every architect must consider and balance cost, schedule, and risk when making design deci-
sions. As such it is impossible to deal with all unknown unknowns. There is always an enve-
lope of faults and error states that a prudent architect chooses to handle. The unknown 
unknowns are then the complement to these identified faults and states. One of the motivations 
for enumerating tactics is to help architects reflect on and, ideally, broaden that “known” enve-
lope.  

As an analyst, when you see a tactic such as exception handling being employed, you should 
ask which exceptional states that tactic handles and additionally ask what happens to excep-
tional states not captured. Models, such as fault tree analysis, can help analysts understand the 
scope of the tactics that architects are considering.  

5.1.1 Detect Faults 

Before any system can take action regarding a fault, the presence of the fault must be detected or 
anticipated. Tactics in this category include the following: 
• Monitor. A monitor is a component that is used to monitor the state of health of various other 

parts of the system: processors, processes, input/output, memory, and so forth. A system 
monitor can detect failure or congestion in the network or other shared resources, such as 
from a denial-of-service attack. It orchestrates software using other tactics in this category to 
detect malfunctioning components. For example, the system monitor can initiate self-tests or 
be the component that detects faulty timestamps or missed heartbeats.6 

 
6  When the detection mechanism is implemented using a counter or timer that is periodically reset, this speciali-

zation of system monitor is referred to as a watchdog. During nominal operation, the process being monitored 
will periodically reset the watchdog counter/timer as part of its signal that it’s working correctly; this is some-
times referred to as “petting the watchdog.” 
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• Ping/echo. Ping/echo refers to an asynchronous request/response message pair exchanged be-
tween nodes, used to determine reachability and the round-trip delay through the associated 
network path. But the echo also determines that the pinged component is alive and responding 
correctly. The ping is often sent by a system monitor. Ping/echo requires a time threshold to 
be set; this threshold tells the pinging component how long to wait for the echo before consid-
ering the pinged to have failed (“timed out”). Standard implementations of ping/echo are 
available for nodes interconnected via the Internet Protocol (IP). 

• Heartbeat. A heartbeat is a fault detection mechanism that employs a periodic message ex-
change between a system monitor and a process being monitored. A special case of heartbeat 
is when the process being monitored periodically resets the watchdog timer in its monitor to 
prevent it from expiring and thus signaling a fault. For systems where scalability is a concern, 
transport and processing overhead can be reduced by piggybacking heartbeat messages on to 
other control messages being exchanged between the process being monitored and the distrib-
uted system controller. The big difference between heartbeat and ping/echo is what holds the 
responsibility for initiating the health check—the monitor or the component itself. 

• Timestamp. This tactic is used to detect incorrect sequences of events, primarily in distributed 
message-passing systems. A timestamp of an event can be established by assigning the state 
of a local clock to the event immediately after the event occurs. Simple sequence numbers can 
also be used for this purpose, if time information is not important. 

• Condition monitoring. This tactic involves checking conditions in a process or device or vali-
dating assumptions made during the design. By monitoring conditions, this tactic prevents a 
system from producing faulty behavior. The computation of checksums is a common example 
of this tactic. However, the monitor must itself be simple (and, ideally, provable) to ensure 
that it does not introduce new software errors. 

• Sanity checking. This tactic checks the validity or reasonableness of specific operations or 
outputs of a computation. This tactic is typically based on a knowledge of the internal design, 
the state of the system, or the nature of the information under scrutiny. It is most often em-
ployed at interfaces to examine a specific information flow. 

• Voting. The most common realization of this tactic is referred to as Triple Modular Redun-
dancy (or TMR, as we will discuss in Section 5.2.2), which employs three components that do 
the same thing, each of which receives identical inputs and forwards its output to voting logic, 
used to detect any inconsistency among the three output states. Faced with an inconsistency, 
the voter reports a fault. It must also decide what output to use. It can let the majority rule or 
choose some computed average of the disparate outputs. This tactic depends critically on the 
voting logic, which is usually realized as a simple, rigorously reviewed, and tested singleton 
so that the probability of error is low. 
− Replication is the simplest form of voting; here, the components are exact clones of each 

other. Having multiple copies of identical components can be effective in protecting 
against random failures of hardware, but this approach cannot protect against design or 
implementation errors, in hardware or software, since there is no form of diversity em-
bedded in this tactic. 
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− Functional redundancy is a form of voting intended to address the issue of common-
mode failures (design or implementation faults) in hardware or software components. 
Here, the components must always give the same output given the same input, but they 
are diversely designed and diversely implemented. 

− Analytic redundancy permits not only diversity among components’ private sides but 
also diversity among the components’ inputs and outputs. This tactic is intended to toler-
ate specification errors by using separate requirement specifications. In embedded sys-
tems, analytic redundancy also helps when some input sources are likely to be 
unavailable at times. For example, avionics programs have multiple ways to compute 
aircraft altitude, such as using barometric pressure, the radar altimeter, and the geometric 
straight-line distance and look-down angle of a point ahead on the ground. The voter 
mechanism used with analytic redundancy needs to be more sophisticated than just let-
ting majority rule or computing a simple average. It may have to understand which sen-
sors are currently reliable or not, and it may be asked to produce a higher fidelity value 
than any individual element can, by blending and smoothing individual values over time. 

• Exception detection. This tactic is used for detecting a system condition that alters the normal 
flow of execution. The exception detection tactic can be further refined: 
− System exceptions will vary according to the processor hardware architecture employed 

and include faults such as divide by zero, bus and address faults, illegal program instruc-
tions, and so forth. 

− The parameter fence tactic incorporates an a priori data pattern (such as 0xDEADBEEF) 
placed immediately after any variable-length parameters of an object. This allows for 
runtime detection of overwriting the memory allocated for the object’s variable-length 
parameters. 

− Parameter typing employs a base class that defines functions that add, find, and iterate 
over message parameters in Type-Length-Value (TLV) format. Derived classes use the 
base class functions to implement functions that provide parameter typing according to 
each parameter’s structure. Use of strong typing to build and parse messages results in 
higher availability than implementations that simply treat messages as byte buckets. Of 
course, all design involves tradeoffs. When you employ strong typing, you typically 
trade higher availability against ease of evolution. 

− Timeout is a tactic that raises an exception when an element detects that it or another ele-
ment has failed to meet its timing constraints. For example, an element awaiting a re-
sponse from another element can raise an exception if the wait time exceeds a certain 
value. 

• Self-test. Elements (often entire subsystems) can run procedures to test themselves for correct 
operation. Self-test procedures can be initiated by the element itself or invoked from time to 
time by a system monitor. These may involve employing some of the techniques found in 
condition monitoring such as checksums. 

5.1.2 Recover from Faults 

Recover from faults tactics are refined into preparation and repair tactics and reintroduction tac-
tics. The latter are concerned with reintroducing a failed (but rehabilitated) element back into nor-
mal operation. 
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Preparation and repair tactics are based on a variety of combinations of retrying a computation or 
introducing redundancy. They include the following: 
• Redundant spare. This tactic has three major manifestations: 

− Active redundancy (hot spare). In this configuration, all the nodes (active or redundant 
spare) in a protection group7 receive and process identical inputs in parallel, allowing the 
redundant spare(s) to maintain synchronous state with the active node(s). Because the 
redundant spare possesses an identical state to the active processor, it can take over from 
a failed element in a matter of milliseconds. The simple case of one active node and one 
redundant spare node is commonly referred to as 1+1 (“one plus one”) redundancy. Ac-
tive redundancy can also be used for facilities protection, where active and standby net-
work links are used to ensure highly available network connectivity. 

− Passive redundancy (warm spare). In this configuration, only the active members of the 
protection group process input traffic; one of their duties is to provide the redundant 
spare(s) with periodic state updates. Because the state maintained by the redundant 
spares is only loosely coupled with that of the active node(s) in the protection group 
(with the looseness of the coupling being a function of the checkpointing mechanism 
employed between active and redundant nodes), the redundant nodes are referred to as 
warm spares. Depending on a system’s availability requirements, passive redundancy 
provides a solution that achieves a balance between the more highly available but more 
compute-intensive (and expensive) active redundancy tactic and the less available but 
significantly less complex cold spare tactic (which is also significantly cheaper). 

− Spare (cold spare). Cold sparing refers to a configuration where the redundant spares of 
a protection group remain out of service until a failover occurs, at which point a power-
on-reset procedure is initiated on the redundant spare before it is placed in service. Due 
to its poor recovery performance, cold sparing is better suited for systems having only 
high-reliability (MTBF) requirements as opposed to those also having high-availability 
requirements. 

• Rollback. This tactic permits the system to revert to a previous known good state, referred to 
as the “rollback line”—rolling back time—upon the detection of a failure. Once the good 
state is reached, then execution can continue. This tactic is often combined with active or pas-
sive redundancy tactics so that after a rollback has occurred a standby version of the failed 
element is promoted to active status. Rollback depends on a copy of a previous good state (a 
checkpoint) being available to the elements that are rolling back. Checkpoints can be stored in 
a fixed location and updated at regular intervals or at convenient or significant times in the 
processing, such as at the completion of a complex operation. 

• Exception handling. Once an exception has been detected, the system must handle it in some 
fashion. The easiest thing it can do is simply to crash, but of course that’s a terrible idea from 
the point of availability, usability, testability, and plain good sense. There are much more pro-
ductive possibilities. The mechanism employed for exception handling depends largely on the 
programming environment employed, ranging from simple function return codes (error 
codes) to the use of exception classes that contain information helpful in fault correlation, 

 
7  A protection group is a group of processing nodes where one or more nodes are “active” and the remaining 

nodes in the protection group serve as redundant spares. 
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such as the name of the exception thrown, the origin of the exception, and the cause of the ex-
ception. Software can then use this information to mask the fault, usually by correcting the 
cause of the exception and retrying the operation. 

• Software upgrade. The goal of this tactic is to achieve in-service upgrades to executable code 
images without affecting services. These are commonly used in routers, telecommunications 
switches, and similar contexts where reboots and downtime are not practical. The actual up-
grade may be realized as a function patch, class patch, or hitless in-service software upgrade 
(ISSU). A function patch is used in procedural programming and employs an incremental 
linker/loader to store an updated software function into a pre-allocated segment of target 
memory. The new version of the software function will employ the entry and exit points of 
the deprecated function. Also, upon loading the new software function, the symbol table must 
be updated and the instruction cache invalidated. The class patch realization of this tactic is 
applicable for targets executing object-oriented code, where the class definitions include a 
backdoor mechanism that enables the runtime addition of member data and functions. Hitless 
ISSU leverages the active redundancy or passive redundancy tactics to achieve non-service-
affecting upgrades to software and associated schema. In practice, the function patch and 
class patch are used to deliver bug fixes while the hitless ISSU is used to deliver new features 
and capabilities. 

• Retry. The retry tactic assumes that the fault that caused a failure is transient and retrying the 
operation may lead to success. This tactic is used in networks and server farms where failures 
are expected and common. There should be a limit on the number of retries that are attempted 
before a permanent failure is declared. 

• Ignore faulty behavior. This tactic calls for ignoring messages sent from a particular source 
when the system determines that those messages are spurious. For example, we could instruct 
it to ignore messages from an external element launching a denial-of-service attack, such as 
by establishing filters for an access-control list. 

• Graceful degradation. This tactic maintains the most critical system functions in the presence 
of element failures, dropping less critical functions. This is done to ensure that failures of in-
dividual system elements gracefully reduce system functionality but do not cause a complete 
system failure. 

• Reconfiguration. Using this tactic, a system attempts to recover from failures of a system ele-
ment by reassigning responsibilities to the resources left functioning, while maintaining as 
much of the critical functionality as possible. 

Reintroduction is where a failed element is reintroduced after a repair has been effected. Reintro-
duction tactics include the following: 
• Shadow. This tactic refers to operating a previously failed or in-service upgraded element in a 

“shadow mode” for a predefined duration of time prior to reverting the element back to an ac-
tive role. During this duration its behavior can be monitored for correctness, and it can repop-
ulate its state incrementally. 

• State resynchronization. This tactic is a reintroduction partner to the active redundancy and 
passive redundancy preparation and repair tactics. When used alongside the active redun-
dancy tactic, the state resynchronization occurs organically, since the active and standby ele-
ments each receive and process identical inputs in parallel. In practice, the states of the active 
and standby elements are periodically compared to ensure synchronization. This comparison 
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may be based on a cyclic redundancy check calculation (checksum) or, for systems providing 
safety-critical services, a message digest calculation (a one-way hash function). When used 
alongside the passive redundancy (warm spare) tactic, state resynchronization is based solely 
on periodic state information transmitted from the active element(s) to the standby element(s), 
typically via checkpointing. A special case of this tactic is found in stateless services, 
whereby any resource can handle a request from another (failed) resource. 

• Escalating restart. This reintroduction tactic allows the system to recover from faults by vary-
ing the granularity of the element(s) restarted and minimizing the level of service affectation. 
For example, consider a system that supports four levels of restart, as follows. The lowest 
level of restart (call it Level 0), and hence least impacting on services, employs passive re-
dundancy (warm spare), where all child threads of the faulty element are killed and recreated. 
In this way, only data associated with the child threads is freed and reinitialized. The next 
level of restart (Level 1) frees and reinitializes all unprotected memory, while protected 
memory remains untouched. The next level of restart (Level 2) frees and reinitializes all 
memory, both protected and unprotected, forcing all applications to reload and reinitialize. 
And the final level of restart (Level 3) would involve completely reloading and reinitializing 
the executable image and associated data segments. Support for the escalating restart tactic is 
particularly useful for the concept of graceful degradation, where a system is able to degrade 
the services it provides while maintaining support for mission-critical or safety-critical appli-
cations. 

• Non-stop forwarding. The concept of non-stop forwarding originated in router design. In this 
design, functionality is split into two parts: supervisory, or control plane (which manages con-
nectivity and routing information), and data plane (which does the actual work of routing 
packets from sender to receiver). If a router experiences the failure of an active supervisor, it 
can continue forwarding packets along known routes—with neighboring routers—while the 
routing protocol information is recovered and validated. When the control plane is restarted, it 
implements what is sometimes called “graceful restart,” incrementally rebuilding its routing 
protocol database even as the data plan continues to operate. 

5.1.3 Prevent Faults 

Instead of detecting faults and then trying to recover from them, what if your system could pre-
vent them from occurring in the first place? Although this sounds like some measure of clairvoy-
ance might be required, it turns out that in many cases it is possible to do just that.8 
• Removal from service. This tactic refers to temporarily placing a system element in an out-of-

service state for the purpose of mitigating potential system failures. One example involves 
taking an element of a system out of service and resetting the element in order to scrub latent 
faults (such as memory leaks, fragmentation, or soft errors in an unprotected cache) before the 
accumulation of faults becomes service affecting (resulting in system failure). Another term 
for this is software rejuvenation. 

 
8  These tactics deal with runtime means to prevent faults from occurring. Of course, an excellent way to prevent 

faults—at least in the system you’re building, if not in systems that your system must interact with—is to pro-
duce high-quality code. This can be done by means of code inspections, pair programming, solid requirements 
reviews, and a host of other good engineering practices. 
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• Substitution. This tactic employs safer protection mechanisms—often hardware-based—for 
software design features that are considered critical. For example, hardware protection de-
vices such as watchdogs, monitors, and interlocks are often used in lieu of software versions, 
as these are typically more reliable. Note that substitution is typically only feasible and bene-
ficial when the function being replaced is relatively simple. 

• Transactions. Systems targeting high-availability services leverage transactional semantics to 
ensure that asynchronous messages exchanged between distributed elements are atomic, con-
sistent, isolated, and durable. These four properties are referred to as the “ACID properties.” 
The most common realization of the transactions tactic is “two-phase commit” protocol. This 
tactic prevents race conditions caused by two processes attempting to update the same data 
item. 

• Predictive model. A predictive model, when combined with a monitor, is employed to moni-
tor the state of health of a system process to ensure that the system is operating within its 
nominal operating parameters and to take corrective action when conditions are detected that 
are predictive of likely future faults. The operational performance metrics monitored are used 
to predict the onset of faults; examples include session establishment rate (in an HTTP 
server), threshold crossing (monitoring high- and low-water marks for some constrained, 
shared resource), maintaining statistics for process state (in-service, out-of-service, under 
maintenance, idle), and message queue length statistics. 

• Exception prevention. This tactic refers to techniques employed for the purpose of preventing 
system exceptions from occurring. The use of exception classes, which allows a system to 
transparently recover from system exceptions, was discussed above. Other examples of ex-
ception prevention include abstract data types such as smart pointers and the use of wrappers 
to prevent faults such as dangling pointers and semaphore access violations from occurring. 
Smart pointers prevent exceptions by doing bounds checking on pointers and by ensuring that 
resources are automatically deallocated when no data refers to them. In this way resource 
leaks are avoided. 

• Increase competence set. A program’s competence set is the set of states in which it is  
“competent” to operate. For example, the state when the denominator is zero is outside the 
competence set of most divide programs. When an element raises an exception, it is signaling 
that it has discovered itself to be outside its competence set; in essence, it doesn’t know what 
to do and quits in defeat. Increasing an element’s competence set means designing it to handle 
more cases—faults—as part of its normal operation. For example, an element that assumes it 
has access to a shared resource might throw an exception if it discovers that access is blocked. 
Another element might simply wait for access or return immediately with an indication that it 
will complete its operation on its own the next time it does have access. In this example, the 
second element has a larger competence set than the first. 

• Abort. If an operation is determined to be unsafe, it is aborted before it can cause damage. 
This tactic is a common strategy employed to ensure that a system fails safely. 

• Masking. A system may mask a fault by comparing the results of several redundant upstream 
components and employing a voting procedure in case one or more of the values output by 
these upstream components differ. In such a case the majority wins, and any erroneous values 
are never seen by downstream components. For this tactic to work, the voter must be simple 
and highly reliable (perhaps employing the substitution tactic). 
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5.2 Patterns 

As stated above, architectural tactics are the fundamental building blocks of design. Hence, they 
are the building blocks of architectural patterns. By way of analogy, we say that tactics are atoms 
and patterns are molecules. During analysis it is often useful for analysts to break down complex 
patterns into their component tactics so that they can better understand the specific set of quality 
attribute concerns that patterns address, and how. This approach simplifies and regularizes analy-
sis, and it also provides more confidence in the completeness of the analysis. 

Next, we provide a brief description of a set of patterns, a discussion of how the patterns promote 
robustness, and the other quality attributes that are negatively impacted by these patterns 
(tradeoffs). Note that just because a pattern negatively impacts some other quality attribute, this 
does not mean that the levels of that quality attribute will be unacceptable. For example, the use of 
the transactions tactic always negatively affects performance (specifically latency) as transactions 
add some overhead. This is inevitable; the inclusion of the transaction protocol adds processing 
and communication steps. This is not to say, however, that the resulting latency of the system will 
be unacceptable. Perhaps the added latency is only a small fraction of end-to-end latency on the 
most important use cases. In such cases the tradeoff is a good one, providing benefits for robust-
ness while “costing” only a small amount of latency. 

It is also important to note that the tradeoffs described below are general. Other architectural 
mechanisms or decisions applied with the pattern may change the impacts. For example, if one 
chose the active redundancy (hot spare) tactic, one could employ Mesos, in “high availability” 
mode, employing Apache Zookeeper. Zookeeper provides an infrastructure for synchronization of 
nodes in a “quorum,” where the nodes act as hot spares for each other, typically with one being 
the “master” and the remainder of the nodes being “backups.” Updates get sent to the master, 
which automatically informs the backups. The use of such a tool might greatly ease the imple-
mentation burden of this tactic. These are the kinds of assessments that analysts need to make 
when assessing the appropriateness of the tactics and patterns selected and implemented. 

This pattern list is not meant to be exhaustive. The purpose of this section is to illustrate the most 
common robustness patterns—Process Pairs, Triple Modular Redundancy, N+1 Redundancy, Cir-
cuit Breaker, Recovery Blocks, Forward Error Recovery, Health Monitoring, and Throttling—and 
to show how analysts can break patterns down into tactics that allow them to understand the pat-
terns’ quality attribute characteristics, strengths, weaknesses, and tradeoffs. 

5.2.1 Process Pairs 

The Process Pairs pattern combines software (and sometimes hardware) redundancy tactics with 
transactions and checkpointing. Two identical processes are running, with one process being des-
ignated the “primary” or “leader.” This primary process is the one that clients interact with at 
runtime, under normal circumstances. As the primary process processes information, it bundles its 
execution into transactions. These transactions typically result in a change to data in the primary 
process. When a transaction has successfully completed, a “checkpoint” is sent to the backup pro-
cess so that the backup can align the state of its data with that of the primary. In this way, if the 
primary process fails, the backup always has a consistent state that is as complete as the state of 
the failed primary (except for any transaction that failed in mid-execution on the primary). 
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Benefits for robustness: 
• The benefit of Process Pairs, over simply using a transaction mechanism, is that upon failure 

of the primary process the recovery is very fast (as compared with restarting the primary pro-
cess and playing back the transaction log to recreate the state just prior to the failure). 

Tradeoffs: 
• The Process Pairs pattern requires the expenditure of additional software, networking, and po-

tentially hardware resources. 
• Adding the checkpointing and failover mechanisms increases up-front complexity. 

5.2.2 Triple Modular Redundancy 

The Triple Modular Redundancy (TMR) pattern is one of the earliest known robustness patterns. 
Its roots can be traced back to at least 1951 in computer hardware, where TMR was used in mag-
netic drum memory to ameliorate the inherent unreliability of individual elements. It builds upon 
the active redundancy tactic, where two or more elements process the same inputs in parallel. 
Many variants of this pattern exist, such as quad-modular redundancy (QMR) and N-modular re-
dundancy. In each case one node may be elected as “active” with the other nodes processing all 
inputs in parallel, but only being activated in case the active node fails. In other versions there is a 
voting process where the voter collects and compares the “votes” from each of the replicated 
nodes; if a node disagrees with the majority, it is marked as failed and its outputs are ignored. 

Benefits for robustness: 
• The most obvious benefit of TMR is the avoidance of a single point of failure. 
• If a voter is used, then this pattern also includes a fault detection mechanism. 

Tradeoffs: 
• Redundancy greatly increases the hardware costs for the system, its complexity, and its initial 

development time. Also, systems using this pattern consume substantially more resources at 
runtime (e.g., energy and network bandwidth). Finally, there is the added complexity of deter-
mining which of the nodes to anoint as the “active” node and, in case of failure, which backup 
to promote to active status. 

• Some systems do not use exact replicas, but rather use N-version programming [Avizienis 
1985] to produce functionally equivalent nodes. N-version programming can result in a more 
robust system, since the different versions are less likely to suffer from a common mode fail-
ure than pure replicas, but it greatly increases the cost and complexity of the system’s soft-
ware. 

5.2.3 N+1 Redundancy 

The N+1 Redundancy pattern builds upon one or more redundancy tactics. In this pattern there are 
N active nodes, with one spare node. The assumptions are that the active nodes have similar func-
tionality and the spare node can be introduced to replace any of the N active nodes if one of them 
has failed. The one spare node may be an active spare, meaning that it processes all the same in-
puts as the system(s) that it is mirroring; it may be a passive spare, meaning that the active nodes 
periodically send it updates; or it may be a cold spare, meaning that when it takes the place of a 
failed node it initially has none of that node’s state. 
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Benefits for robustness: 
• Clearly N+1 Redundancy provides the benefit of any redundancy pattern, which is the avoid-

ance of a single point of failure. 
• Just as clearly, N+1 Redundancy is much less expensive than TMR, QMR, or similar patterns 

that require a heavy investment in software and hardware, since a single backup node can 
back up any chosen number of active nodes. 

Tradeoffs: 
• The higher the N, the greater the likelihood that more than one failure could occur. 
• The lower the N, the more an implementation of this pattern costs, in terms of redundant 

hardware and the attendant energy costs. 

5.2.4 Circuit Breaker 

The Circuit Breaker pattern is used to detect failures and prevent the failure from constantly reoc-
curring or cascading to other parts of a system. It is commonly used in cases where failures are 
intermittent. A Circuit Breaker is a combination of a timeout (an exception detection tactic) and a 
monitor, which is an intermediary between services [Kazman 2020b]. With a Circuit Breaker [Ny-
gard 2017], a service is wrapped and the wrapper monitors the state of the service. If it is deter-
mined that the service is not operating consistently with its specification, the breaker is tripped, 
and all subsequent calls to the service return an error immediately. This ensures that such depend-
encies do not slow down other parts of the system due to, for example, repeated timeouts, which 
increases the controllability of the deployment. 

Benefits for robustness: 
• The use of this pattern limits the consequences of a failure by wrapping the interface to that 

element and returning immediately if a failure has been detected. This can greatly reduce the 
amount of resources wasted on retrying a service that is known to have failed. 

Tradeoffs: 
• The use of a Circuit Breaker will negatively affect performance. Like many robustness pat-

terns, this tradeoff is often considered to be justifiable, particularly if services experience in-
termittent and transient failures. 

5.2.5 Recovery Blocks 

The Recovery Blocks pattern is used when there are several possible ways to process a result 
based on an input and one is chosen as the primary processing capability. After the primary pro-
cessing capability returns a result, it is passed through an acceptance test. If this test fails, this pat-
tern then tries passing the input to a second processing capability. This second processing 
capability acts as a “recovery block” for the primary. This process can continue for any number of 
backup processing capabilities. This is a kind of N-version programming, or it may be realized as 
a form of analytic redundancy. 

Another variant of this pattern occurs when all the components process the input in parallel—an 
instance of active redundancy of software components—and some selection logic looks at the re-
sults of each component’s acceptance tests in order, starting from the primary. The major 
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difference between these two variants is that the first variant invokes the processing components 
serially, and the second one invokes them in parallel. 

Benefits for robustness: 
• This pattern is useful in cases where the processing is complex, where high availability is de-

sired, but where hardware redundancy is not a viable option. This pattern does not protect 
against hardware failures, of course, but it does provide some protection against software fail-
ures and bugs. 

Tradeoffs: 
• If the serial variant of this pattern is employed, latency (from the time the input arrives to the 

time that an acceptable result is produced) will be increased in cases where one or more ac-
ceptance tests fail. 

• If the parallel variant of this pattern is employed, substantially more CPU resources will be 
consumed to process each input. 

5.2.6 Forward Error Recovery 

The Forward Error Recovery pattern is a kind of active redundancy employed in situations where 
relatively high levels of faults are expected. The idea of Forward Error Recovery originated in the 
telecommunications domain, where communication over noisy channels resulted in large numbers 
of packets being damaged, resulting in large numbers of packet retries. This was expensive, par-
ticularly in the early days of telecommunications or in cases where latency was very large (for ex-
ample, communication with space probes). To attempt to address this shortcoming, packets were 
encoded with redundant information so that they could self-detect and self-correct a limited num-
ber of errors. This approach to detecting and correcting errors has been manifested in many other 
domains, such as in RAID (Redundant Arrays of Inexpensive Disks). In this case, with large num-
bers of disks, failures are expected to occur on a regular basis, so redundant information is stored 
on the disk array (hence the R in RAID), enabling the array to function at a high level of availabil-
ity, masking errors on individual disks. 

Benefits for robustness: 
• This pattern is useful in cases where the underlying hardware or software is unreliable and 

where it is possible to encode redundant information. 

Tradeoffs: 
• As with most patterns for robustness, higher levels of availability can be costly. For example, 

the higher the level of redundancy in a disk array, the more expensive it is (on a per-kilobyte 
stored basis), and the more redundant information included in a packet, the lower the effective 
bandwidth of the network. 

• If the number of errors and combinations of errors are expected to be high, then creating such 
Forward Error Recovery schemes can be complex and costly and may only cover a small set 
of the erroneous states. 
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5.2.7 Health Monitoring 

In complex networked environments, just determining the health of a remote service may be chal-
lenging. To achieve high levels of availability, it is necessary to be able to tell, with confidence, 
whether a service is operating consistently with its specifications. The Health Monitoring pattern 
(sometimes called “Endpoint Health Monitoring”) addresses this need. The monitor is a separate 
service that periodically sends a message to every endpoint that needs to be monitored. The sim-
plest form of this pattern is ping/echo, where the monitor sends a ping message, which is echoed 
by the endpoint. But more sophisticated checks are common—instances of the monitor tactic—
such as measuring the round-trip latency for send/response messages and checking on various 
properties of the monitored endpoints such as CPU utilization, memory utilization, application-
specific measures, and so forth. 

Benefits for robustness: 
• This pattern is useful in cases where the system is distributed and where the health of the dis-

tributed components cannot be assessed locally in a timely fashion (for example, by waiting 
for messages to time out). 

• This pattern also allows for arbitrarily sophisticated measures of health to be implemented. 

Tradeoffs: 
• As with the other patterns for robustness, monitoring requires more up-front work than not 

monitoring. It also requires additional runtime processing and network bandwidth. 

5.2.8 Throttling 

In contexts where demand on the system, or a portion of the system, is unpredictable, the Throt-
tling pattern can be employed to ensure that the system will continue to function consistently with 
its service-level agreements and that resources are apportioned consistently with system goals. 
The idea is that a component, such as a service, monitors its own performance measures (such as 
its response time), and when it approaches a critical threshold it throttles incoming requests. A 
number of throttling strategies can be employed—each of these corresponding to a “Control Re-
source Demand” tactic [Bass 2012]. For example, the throttling could mean rejecting requests 
from certain sources (perhaps based on their priority, criticality, or the amount of resources that 
they have already consumed), disabling or slowing the response for specific request types (for less 
essential functions), or reducing response time evenly for all incoming requests. 

Benefits for robustness: 
• As we described in Section 2, the goal of robustness is for a software-intensive system to 

keep working, consistently with its specifications, despite the presence of external stresses, 
over a long period of time. The Throttling pattern aids in this objective by ensuring that es-
sential services remain available, at the cost of degrading some kinds or qualities of the sys-
tem’s functionality. 

Tradeoffs: 
As with the other patterns for robustness, throttling requires more up-front work than not throt-
tling, and it requires a small amount of runtime processing to monitor critical resource usage lev-
els and to implement the throttling policy. 
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6 Analyzing for Robustness 

An analyst’s job is to judge the appropriateness of the mechanisms built into the architecture of a 
system S, in light of the robustness stimuli that the system will need to withstand. And as stated 
above, “appropriateness” is really a function of the risks and costs of the anticipated integrations. 
Analysts can specify these potential or anticipated integrations using scenarios, as we exemplified 
above, and for consistency and repeatability they can guide stakeholders to derive those scenarios 
from the robustness general scenario. 

Analyzing for robustness at different points in the software development lifecycle will take differ-
ent forms. The different analysis options are sketched in Table 3. If analysts only have a reference 
architecture or a functional architecture, for example, then they cannot make detailed predictions 
or claims about the level of difficulty associated with achieving a desired robustness response 
measure. What the analyst can employ, at that early stage, is a checklist or tactics-based question-
naire. These analysis techniques will reveal the designer’s intentions with respect to robustness. 

On the other hand, if the analysts have received a defined and documented [Clements 2010] prod-
uct architecture—perhaps including views such as Functional, Hardware, and Software Architec-
ture—but little or no coding has been done, they can still employ checklists and tactics-based 
questionnaires to understand the design intent. But as shown in Table 3, the analysts can also 
begin to think about employing analysis models. 

The point is that there is no one-size-fits-all analysis methodology and tools that we can recom-
mend: The analysis team needs to respond appropriately to whatever artifacts have been made 
available for analysis. And the analysis team and the product owner need to understand that the 
accuracy of the analysis and expected degree of confidence in the analysis results will vary ac-
cording to the quality of the available artifacts. 

Table 3: Lifecycle Phases and Possible Analyses for Robustness 

Lifecycle Phase Typical Available Artifacts Possible Analyses 

Early Design  Set of selected mechanisms/tactics/patterns Checklist 
Tactics-based questionnaire 

Software Architecture 
Defined 

Set of containers for functionality (e.g., modules, 
services, microservices) and their interfaces 

Checklist 
Tactics-based questionnaire 
Model-based analyses 

Implemented System Set of elements—services, processes, threads, 
etc.—and their interaction mechanisms—calls, 
pub/sub, messages, etc.—along with the mapping 
of these elements to hardware and networks 

Checklist 
Measurement-based analyses 
Model-based analyses 

6.1 Tactics-Based Questionnaire 

Architectural tactics have been presented thus far as design primitives, following the concepts and 
principles introduced in Software Architecture in Practice [Bass 2012] and Designing Software 
Architectures [Cervantes 2016]. However, since tactics are meant to cover the entire space of ar-
chitectural design possibilities for a quality attribute, we can use them in analysis as well. Each 
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tactic is a design option for the architect at design time. But used in hindsight, they represent a 
taxonomy of the entire design space for robustness. 

Specifically, we have found these tactics to be very useful guides for interviews with the architec-
ture team. (Although the information could be derived from other sources such as document re-
view or reverse engineering, interviews with the architect are typically quite efficient and can be 
very revealing.) These interviews help analysts gain rapid insight into the design approaches 
taken, or not taken, by the architect and the risks therein. These might be risks of omission (e.g., 
the architect did not use this tactic and should have), risks of commission (e.g., this tactic is not 
really required, which increases costs with little or no commensurate benefit), risks on how a tac-
tic was implemented (e.g., the team implemented a tactic themselves when a better, more mature 
alternative already existed), or managerial risks (e.g., the tactic has not been properly communi-
cated to the team). 

For example, consider the list of robustness tactics-inspired questions presented in Table 4. The 
analyst asks each question and records the answers in the table. 

Table 4: Example Tactics-Based Robustness Questions 

Tactics 
Group 

Tactics Question Sup-
ported? 
(Y/N) 

Risk Design 
Decisions and 
Location 

Rationale and 
Assumptions 

Detect 
Faults 

Does the system use an element to 
monitor the state of health of other 
parts of the system?  
A system monitor can detect failure 
or congestion in the network or other 
shared resources, such as from a de-
nial-of-service attack. 

    

 
Does the system use ping/echo to 
detect a failure of an element or con-
nection or network congestion?  

    

 
Does the system use a heartbeat—a 
periodic message exchange between 
a system monitor and a process—to 
detect a failure of an element or con-
nection or network congestion? 

    

 

Does the system use a timestamp to 
detect incorrect sequences of events 
in distributed systems? 

    

 

Does the system employ condition 
monitoring to check conditions in a 
process or device or to validate as-
sumptions made during the design? 
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Tactics 
Group 

Tactics Question Sup-
ported? 
(Y/N) 

Risk Design 
Decisions and 
Location 

Rationale and 
Assumptions 

 

Does the system employ sanity 
checking to check the validity or rea-
sonableness of specific operations or 
outputs of a computation? 

  

 
 

 

Does the system use voting to check 
that replicated elements are produc-
ing the same results? 
The replicated elements may be 
identical replicas, functionally redun-
dant, or analytically redundant. 

    

 

Does the system use exception de-
tection to detect a system condition 
that alters the normal flow of execu-
tion (e.g., system exception, parame-
ter fence, parameter typing, or 
timeout)? 

    

 

Can the system do a self-test to test 
itself for correct operation? 

    

Recover 
from 
Faults 
(Prepara-
tion and 
Repair) 

Does the system employ active re-
dundancy (hot spare)? 
In active redundancy, all nodes in a 
protection group (a group of nodes 
where one or more nodes are “ac-
tive,” with the remainder serving as 
redundant spares) receive and pro-
cess identical inputs in parallel, allow-
ing redundant spares to maintain 
synchronous state with the active 
node(s). 

    

 
Does the system employ passive re-
dundancy (warm spare)? 
In passive redundancy, only the ac-
tive members of the protection group 
process input traffic; one of their du-
ties is to provide the redundant 
spare(s) with periodic state updates. 

    

 

Does the system employ spares 
(cold spares)? 
Here, redundant spares of a protec-
tion group remain out of service until 
a failover occurs, at which point a 
power-on-reset procedure is initiated 
on the redundant spare before it is 
placed in service. 
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Tactics 
Group 

Tactics Question Sup-
ported? 
(Y/N) 

Risk Design 
Decisions and 
Location 

Rationale and 
Assumptions 

 

Does the system employ rollback, so 
that it can revert to a previously 
saved good state (the “rollback line”) 
in the event of a fault? 

  

 
 

 

Does the system employ exception 
handling to deal with faults? 
Typically, the handling involves either 
reporting the fault or handling it, po-
tentially masking the fault by correct-
ing the cause of the exception and 
retrying. 

    

 

Can the system perform in-service 
software upgrades to executable 
code images in a non-service-affect-
ing manner? 

    

 

Does the system systematically retry 
in cases where the element or con-
nection failure may be transient? 

    

 

Can the system simply ignore faulty 
behavior (e.g., ignoring messages 
sent from a source when it is deter-
mined that those messages are spu-
rious)? 

  

 
 

 

Does the system have a policy of 
degradation when resources are 
compromised, maintaining the most 
critical system functions in the pres-
ence of element failures and drop-
ping less critical functions? 

    

 

Does the system have consistent pol-
icies and mechanisms for reconfigu-
ration after failures, reassigning 
responsibilities to the resources left 
functioning, while maintaining as 
much functionality as possible? 

    

Recover 
from 
Faults 
(Reintro-
duction) 

Can the system operate a previously 
failed or in-service upgraded element 
in a “shadow mode” for a predefined 
time prior to reverting the element 
back to an active role? 
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Tactics 
Group 

Tactics Question Sup-
ported? 
(Y/N) 

Risk Design 
Decisions and 
Location 

Rationale and 
Assumptions 

 

If the system uses active or passive 
redundancy, does it also employ 
state resynchronization, to send 
state information from active to 
standby elements? 

    

 

Does the system employ escalating 
restart to recover from faults by vary-
ing the granularity of the element(s) 
restarted and minimizing the level of 
service affected? 

    

 

Can message processing and routing 
portions of the system employ non-
stop forwarding, where functionality 
is split into supervisory and data 
planes?  
In this case, if a supervisor fails, a 
router continues forwarding packets 
along known routes while protocol in-
formation is recovered and validated. 

    

Prevent 
Faults 

Can the system remove elements 
from service, temporarily placing a 
system element in an out-of-service 
state for the purpose of mitigating po-
tential system failures?  

  

 
 

 

Does the system employ transac-
tions, bundling state updates so that 
asynchronous messages exchanged 
between distributed elements are 
atomic, consistent, isolated, and du-
rable? 

    

 

Does the system use a predictive 
model to monitor the state of health 
of an element to ensure that the sys-
tem is operating within nominal pa-
rameters? 
When conditions are detected that 
are predictive of likely future faults, 
the model initiates corrective action. 

    

When using this set of questions in an interview, the analyst records whether or not each tactic is 
supported by the system’s architecture, according to the opinions of the architect. When analyzing 
an existing system, the analyst can additionally investigate 
• whether there are any obvious risks in the use (or non-use) of this tactic. If the tactic has been 

used, record how it is realized in the system (e.g., via custom code, generic frameworks, or 
externally produced elements). 
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• the specific design decisions made to realize the tactic and where in the code base the imple-
mentation (realization) may be found. This is useful for auditing and architecture reconstruc-
tion purposes. 

• any rationale or assumptions made in the realization of this tactic. 

These questionnaires can be used by an analyst, who poses each question to the architect and rec-
ords the responses, as a means of conducting an architecture analysis. To use these questionnaires, 
simply follow these four steps: 
1. For each tactics question, fill the “Supported” column with Y if the tactic is supported in the 

architecture and with N otherwise. The tactic name in the “Tactics Question” column is 
bolded. 

2. If the answer in the Supported column is Y, then in the “Design Decisions and Location” 
column describe the specific design decisions made to support the tactic and enumerate 
where these decisions are manifested (located) in the architecture. For example, indicate 
which code modules, frameworks, or packages implement this tactic. 

3. In the “Risk” column, indicate the anticipated or experienced difficulty or risk of implement-
ing the tactic using a scale: H = High, M = Medium, L = Low. For example, a tactic that is of 
medium difficulty or risk to implement (or which is anticipated to be of medium difficulty, if 
it has not yet been implemented) would be labeled M. 

4. In the “Rationale and Assumptions” column, describe the rationale for the design decisions 
made (including a decision to not use this tactic). Briefly explain the implications of this de-
cision. For example, explain the rationale and implications of the decision in terms of the im-
pact on cost, schedule, evolution, and so forth. 

While this interview-based approach might sound simplistic, it can be very powerful and insight-
ful. In architects’ daily activities, they likely do not take the time to step back and consider the 
bigger picture. A set of interview questions such as those shown in Table 4 forces an architect to 
do just that. And this process can be quite efficient: A typical interview for a single quality attrib-
ute takes between 30 and 90 minutes. 

6.2 Architecture Analysis Checklist for Robustness  

As presented in the work of Bass and colleagues, one can view an architecture design as the result 
of applying a collection of design decisions [Bass 2012]. We view architecture design and analy-
sis as two sides of the same coin [Cervantes 2016]: any design decision made by an architect 
should be analyzed. Design and analysis are not distinct activities—they are intimately related. 
What we present next is a systematic categorization of these decisions so that an architect or ana-
lyst can focus attention on those design dimensions likely to be most troublesome. 

There are seven major categories of design decisions that face an architect. These decisions will 
affect both software and, to a lesser extent, hardware architectures. These are 
1. allocation of responsibilities 
2. coordination model 
3. data model 
4. mapping among architectural elements 
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5. management of resources 
6. binding time  
7. choice of technology 

These categories are not the only way to classify architectural design decisions, but they do pro-
vide a rational (and exhaustive) division of concerns. The concerns addressed in these categories 
might overlap, but it’s all right if a particular decision exists in two different categories because 
the duty of the architect and of the analyst is to ensure that every important decision has been con-
sidered. 

Some of these design decisions might be trivial. For example, an architect may have no choice of 
technology decisions to make if he is required to implement the software on a prespecified plat-
form over which he has little or no control. Or for some applications, the data model might be 
trivial. But for other categories of design decisions, the architect might have considerable latitude. 

For each quality attribute, we enumerate a set of questions—a checklist—that will lead an analyst 
to question the decisions made, or not made, by the architect, and for some of these decisions to 
refine the questions into a deeper analysis. The checklist for robustness is presented below. 

Category Checklist 

Allocation of  
responsibilities 

Determine the system responsibilities that need to be robust. Within those responsibili-
ties, ensure that additional responsibilities have been allocated to detect an omission, 
crash, incorrect timing, or incorrect response. Additionally ensure that there are respon-
sibilities to 
• log the fault 
• notify appropriate entities (people or systems) 
• disable the source of events causing the fault 
• be temporarily unavailable 
• fix or mask the fault/failure 
• operate in a degraded mode 

Coordination model Determine the system responsibilities that need to be robust. With respect to those re-
sponsibilities, 
• ensure that coordination mechanisms can detect an omission, crash, incorrect tim-

ing, or incorrect response. Consider, for example, whether guaranteed delivery is 
necessary. Will the coordination work under conditions of degraded communication? 

• ensure that coordination mechanisms enable the logging of the fault, notification of 
appropriate entities, disabling of the source of the events causing the fault, fixing or 
masking the fault, or operating in a degraded mode. 

• ensure that the coordination model supports the replacement of the artifacts used 
(processors, communications channels, persistent storage, and processes). For ex-
ample, does replacement of a server allow the system to continue to operate? 

Determine if the coordination will work under conditions of degraded communication, at 
startup/shutdown, in repair mode, or under overloaded operation. For example, how 
much lost information can the coordination model withstand and with what conse-
quences? 

Data model Determine which portions of the system need to be robust. Within those portions, deter-
mine which data abstractions, along with their operations or their properties, could 
cause a fault of omission, a crash, incorrect timing behavior, or an incorrect response. 
For those data abstractions, operations, and properties, ensure that they can be disa-
bled, be temporarily unavailable, or be fixed or masked in the event of a fault. 
For example, ensure that write requests are cached if a server is temporarily unavaila-
ble and performed when the server is returned to service. 
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Mapping among  
architectural  
elements 

Determine which artifacts (processors, communication channels, persistent storage, or 
processes) may produce a fault: omission, crash, incorrect timing, or incorrect response. 
Ensure that the mapping (or re-mapping) of architectural elements is flexible enough to 
permit recovery from the fault. This may involve a consideration of 
• which processes on failed processors need to be reassigned at runtime 
• which processors, data stores, or communication channels can be activated or reas-

signed at runtime 
• how data on failed processors or storage can be served by replacement units 
• how quickly the system can be reinstalled based on the units of delivery provided 
• how to (re-)assign runtime elements to processors, communication channels, and 

data stores 
When employing tactics that depend on redundancy of functionality, the mapping from 
modules to redundant elements is important. For example, it is possible to write one 
module that contains code appropriate for both the active element and backup elements 
in a protection group. 

Management of  
resources 

Determine what critical resources are necessary to continue operating in the presence 
of a fault: omission, crash, incorrect timing, or incorrect response. Ensure there are suf-
ficient remaining resources in the event of a fault to log the fault; notify appropriate enti-
ties (people or systems); disable the source of events causing the fault; be temporarily 
unavailable; fix or mask the fault/failure; and operate normally, in startup, shutdown, re-
pair mode, degraded operation, and overloaded operation. 
Determine the availability time for critical resources, what critical resources must be 
available during specified time intervals, time intervals during which the critical re-
sources may be in a degraded mode, and repair time for critical resources. Ensure that 
the critical resources are available during these time intervals. 
For example, ensure that input queues are large enough to buffer anticipated messages 
if a server fails so that the messages are not permanently lost. 

Binding time Determine how and when architectural elements are bound. If late binding is used to al-
ternate between elements that can themselves be sources of faults (e.g., processes, 
processors, communication channels), ensure the chosen robustness strategy is suffi-
cient to cover faults introduced by all sources. For example: 
• If late binding is used to switch between artifacts such as processors that will receive 

or be the subject of faults, will the chosen fault detection and recovery mechanisms 
work for all possible bindings? 

• If late binding is used to change the definition or tolerance of what constitutes a fault 
(e.g., how long a process can go without responding before a fault is assumed), is 
the recovery strategy chosen sufficient to handle all cases? For example, if a fault is 
flagged after 0.1 ms, but the recovery mechanism takes 1.5 s to work, that might be 
an unacceptable mismatch. 

• What are the robustness characteristics of the late binding mechanism itself? Can it 
fail? 

Choice of  
technology 

Determine the available technologies that can (help) detect faults, recover from faults, 
and reintroduce failed elements. 
Determine what technologies are available that support the response to a fault (e.g., 
event loggers). 
Determine the robustness characteristics of chosen technologies themselves: What 
faults can they recover from? What faults might they introduce into the system?  

6.3 Robustness Models and Analysis Techniques 

The field of reliability and availability modeling has existed for decades, dating back at least to 
World War II era research, where it was applied to physical systems, typically control systems 
and their associated electronics. Traditional reliability approaches are based on the hardware 
“wear-out” model. As software became more prominent in systems, many of the hardware ap-
proaches were “translated” to software. As time went on, software engineers discovered that 
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software failure mechanisms are different than hardware failure mechanisms, and so they devel-
oped new techniques and approaches. 

Typically, evaluation of reliability falls into two broad categories: measurement-based techniques 
and model-based techniques. In this section we provide a brief overview of model-based tech-
niques. We focus on models because these can be applied earlier in the system lifecycle so that 
designers can explore alternative design options. In this way the designer can satisfy robustness 
requirements while balancing other concerns such as cost, performance, and resource utilization. 

Modern reliability and availability analysis models broadly fall into three categories:  
1. black-box models, where a system is viewed as a monolith, where there is no insight into its 

internal structure, and where all measurement is focused on its input and outputs 
2. white-box models, where the internal structure of a system is explicitly considered and mod-

eled using probabilistic methods 
3. combined models, which treat subsystems as black boxes but which analyze the system as a 

white box (sometimes termed “gray-box testing”) 
And the most common modeling formalisms can be categorized as either state-space or non-state-
space techniques, as shown in Figure 3. 

 

Figure 3: Reliability Modeling Formalisms [Source: Trivedi 2017, Figure 2.6, p. 28] 
Source: K.S. Trivedi & A. Bobbio, Reliability and Availability: Modeling, Analysis, Applications. © Cam-
bridge University Press 2017. Reproduced with permission of The Licensor through PLSclear. 

Architecture is about structure and relationships; accordingly, we will focus on modeling tech-
niques where analysts need to know something about the internal structure of a system (i.e., 
white-box and combined models). These models help designers to perform “what if” analyses by 
allowing predictions to be made when changes to components’ configurations, their relationships, 
or properties are made in the early design process. Modeling also aids in evolutionary design, 
where a set of iterative refinements of and predictions about the impact of changes in design deci-
sions are key considerations in analyzing alternatives. “Having dependability modeling tools 
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continuously available for use … by the system designers is important because of the exploratory 
nature that tends to characterize human creative work.” [Boyd 1998]. Boyd and Lau offer some 
advice on selecting the modeling technique that will best serve a system’s needs: “Generally, the 
best strategy is to match the modeling method to the characteristics and required level of detail in 
the behavior of the system that must be modeled” [Boyd 1998]. They also recommend selecting 
the simplest appropriate modeling method. To get this decision right, therefore, an architect 
should understand “the characteristics, capabilities, and limitations of all modeling methods in the 
spectrum” [Boyd 1998]. 

Many questions can be answered through such modeling. Here are some examples: 
• How reliable are the non-repairable components and systems? 
• How available is the repairable system? 
• Where in the system are there most likely to be faults or failures? 

− What are the failure rates of these components? 
− What are the desired repair rates? 
− What are the failure modes of these components? 

• Where could the system benefit from redundancy? 
• Where are the single points of failure? 
• Which are the critical components and hardware? 

− Where is it important to lower fault detection and recovery times? 
− Where can monitoring have the most benefit? What are the monitoring frequencies? 
− What are the required repair rates? 
− Where could the system benefit from fault prevention strategies (e.g., defining and mon-

itoring thresholds, retry)? 
• How important is it to have spare capacity readily available? 
• Where are the opportunities to apply tactics and patterns likely to have significant impact on 

important measures? 

When considering modeling to answer important architectural questions, an important tradeoff be-
tween simplicity and fidelity needs to be accounted for when deciding which modeling techniques 
to use to analyze the design decisions. Figure 4 represents a spectrum of modeling techniques that 
generally become increasingly more complex and provide higher fidelity from left to right. 
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Figure 4: A Spectrum of Modeling Methods [Derived from Boyd 1998] 

Non-state-based techniques such as reliability block diagrams (RBDs) and fault tree analysis 
(FTA) can be done early during the design process, often without experts. The initial iterations of 
these models provide only modest confidence in success or failure predictions, but they do not re-
quire detailed knowledge about the eventual system. The low up-front investment in these tech-
niques can be easily recouped in terms of providing the ability to try “what if” design 
modifications early in the lifecycle and to predict the impact on important reliability measures. 
Both RBDs and FTA are typically refined as the team learns, through iterative design, to provide 
better predictions on system reliability and availability. These techniques are common starting 
points and provide inputs to modeling techniques further to the right in Figure 4. 

State-based techniques such as Markov modeling, generalized stochastic Petri nets, and colored 
Petri nets are higher fidelity modeling techniques that allow designers to model more than success 
or failure. These state-based techniques allow them to model complex sets of failures and repair 
modes. Designers can predict the probability of being in a certain state (or place for Petri nets) at a 
certain step or time. These models often require modeling experts and deeper knowledge of the 
system. The barrier to adoption is thus higher since the modeling experts and designers often need 
to work together for long periods of time to generate and validate the models. 

Both non-state-based and state-based techniques can help analysts make predictions for system 
robustness requirements and provide the ability to consider the consequences of different design 
decisions. These techniques are often used together to reason about reliability and availability in a 
system. 

Our treatment of modeling is not meant to be complete or exhaustive. Our goals are to provide a 
window into a subset of modeling techniques available for analysts to explore and to show how 
they can be used to support analysis by illustrating how a design can be modeled and important 
quality attribute characteristics can be predicted. 

We will briefly describe two non-state-based modeling techniques (RBDs and fault trees) and fin-
ish with a description of two stochastic state-based techniques (Markov models and Petri nets). 
We will show how an architect can walk an analyst through design changes (for example, 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  42  
[Distribution Statement A] Approved for public release and unlimited distribution 

applying tactics or patterns to evolve an existing design) to show how they impact reliability and 
availability predictions from the models. These predictions can be used to provide evidence that 
important quality attribute measures, such as uptime or MTTF, will be met. 

6.3.1 Non-state Based Modeling Techniques 

The non-state-based techniques we will describe are RBDs and fault trees. These two modeling 
techniques can easily be converted into each other, but there may be information loss during the 
transformations (for example, identified causes could be lost converting a fault tree to an RBD). 

Reliability block diagrams, or RBDs, are a graphical representation of the system that is used to 
assess the probability of successful operation. The blocks, or components, are linked based on the 
impact to robustness and they are the smallest unit considered in the analysis. These block dia-
grams primarily model system behavior using series and groups of components. Reliability for a 
series of components is predicted by taking the product of each component’s probability of being 
operational. 

The example in Figure 5 shows a series consisting of three components, where each is associated 
with a probability of being operational, estimated as .9 (sensor), .97 (controller), and .99 (actua-
tor), respectively. In this case, the predicted reliability is R = .9 * .97 * .99 = ~.864. Based on this 
prediction, the architect made a second iteration of the design and decided to use sensor redun-
dancy to improve the overall reliability. 

 

Figure 5: A Simple Series RBD Diagram 

For systems that use redundancy or parallelism, the reliability for the group of components uses 
the probability for each redundant component to calculate the reliability of the group. Figure 6 
represents the new design. 

 

Figure 6: A Group of Sensors (Employing an Active Redundancy Tactic) to Improve Robustness 
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The designers changed the design and the model to introduce redundancy in the form of three re-
dundant sensors. They focused on improving the lowest probability block, which is currently .9. 
Thus, the reliability of this component will need to be recalculated. The calculation for the relia-
bility of a group of components is represented by the following equation [Cepin 2011]: 

 

In this case, the calculation for the reliability of the group of sensors is 

R = 1 – (1-.9)(1-.9)(1-.9) = .999 

The reliability of this system can now be calculated as .999 * .97 * .99. This “what if” design 
change dramatically improves the reliability for the system from ~.864 to an overall predicted re-
liability of ~.959. As an analyst you can see the power of this type of rapid analysis: it quickly 
shines a light on tradeoffs that designers can make. This example shows that three redundant 
lower cost sensors may provide better reliability than one higher cost sensor that has a higher indi-
vidual probability of being in service. The optimal decision may also depend on other contextual 
factors such as resource utilization, power consumption, and weight. The analyst should be aware 
of these other factors during an evaluation. 

The graph in Figure 7 shows examples of how the reliability of a component or subsystem im-
proves as the number of redundant components increases. 

 

Figure 7: Number of Parallel Components [Derived from Cepin 2011] 

The strengths of RBDs are that they are fairly simple to create and the calculations for the analysis 
are straightforward. They are an excellent way for analysts to explore what-if scenarios with de-
signers and to identify components where design changes such as redundancy have a large impact 
on overall reliability. The weakness of this technique is that the calculation is only as good as the 
estimates of the probabilities of the components being operational. RBDs also provide an all-or-
nothing result, ignoring partial failures or degraded modes. 

A fault tree is a top-down logical diagram that displays the interrelationships between a critical 
system event and its causes. Fault trees are concerned with the failure case, in contrast to RBDs, 
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which focus on probability of success. A fault tree has a top event that provides a description of 
the critical system event, basic events at the lowest level that have identified causes, and logic 
gates (e.g., and, or, voting or) that provide the logical relationship between the top event and the 
basic events [Vesely 2002]. 

The analyses that can be done with fault trees are both qualitative (e.g., identifying single points 
of failure) and quantitative (e.g., calculating system uptime, failure probabilities of operations). 
FTA can be used to calculate probabilities of failure for continuously operating non-repairable 
systems, and there are dynamic fault trees for continuously operating repairable systems [NRC 
2015]. Figure 8 and Figure 9 are the equivalent fault trees for the simple series and the parallel 
sensors from the previous RBD examples. 

 

Figure 8: Equivalent Fault Tree of Simple Series RBD Diagram 
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Figure 9: Equivalent Fault Tree for a Group of Sensors (Employing a Redundance Tactic) to Improve 
Robustness 

We will not show the calculations for the fault trees, but note that the numbers are for probability 
of failure. For the top event, the failure probability is ~.041, in contrast to the RBD calculation of 
~.959 reliability. 

Below we will discuss the characteristics and metrics as well as the strengths and weaknesses of 
RBDs and fault trees. We discuss these together since many sources highlight the similarities of 
the techniques. It is important to acknowledge that fault trees focus on failures and their causes, 
while RBDs focus on successful operation. 

Example Characteristics/Metrics from FTA and RBDs: 
• We can calculate MTTF using the failure rate of our non-repairable example. Failure rate = 

.041 per 100 hours of operation. The MTTF = (1 /.041) * 100 = ~2439.24 hours. 
• We can calculate the reliability at points in time for a non-repairable system [Reliability Ana-

lytics 2010–2020]. Units are hours. 
− R(100) = .95983 
− R(200) = .92127 
− R(500) = .81465 
− R(2,500) = .35879 
− R(5,000) = .12873 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  46  
[Distribution Statement A] Approved for public release and unlimited distribution 

• If we change our model to a repairable system and estimate the MTTR, then we can calculate 
uptime and downtime percentages for our system. Assume our MTTR = 1 hour per failure, 
including detection time, and our MTTF previously calculated as ~2,439.24 hours will be our 
estimate for MTBF. If we run the system continuously for 1,000,000 hours, we would expect 
~409.96 failures during this time period. 
− Predicted downtime would be ~409.96 hours or ~.04096%. 
− Predicted uptime would be ~999,590.04 hours or ~99.95904%. 

• We can predict the probabilities of failure and success as illustrated in the example. 
• With FTA and RBDs, analysts can reason about  

− where in the system developers can improve the failure rate and MTBF through retries 
− critical system components that require monitoring to reduce MTTR through early de-

tection (You can also use these models to know where monitoring can be used to prevent 
failures, such as when resource thresholds are reached.) 

− critical system components that could be made more reliable with runtime diagnostics 

Advantages/Strengths: 
• These techniques support qualitative analysis to identify critical components that need moni-

toring, low MTTR, and other strategies that improve robustness. 
• There is a lower barrier to adoption than with state-based techniques. RBDs and fault trees 

can be used by designers. Markov models and Petri nets generally require more modeling ex-
pertise. 

• They allow concise description of the system under study and can be evaluated quickly as the 
architect changes the design. 

• The calculations of component uptime, downtime, and probability of failure are supported by 
tools. 

• These techniques provide insight into where hardware, software, and analytic redundancy can 
improve robustness. 

• The fault trees and RBD models are often more closely aligned with the structure of the de-
sign than Markov models and Petri nets. 

Disadvantages/Weaknesses: 
• It can be difficult to model a complex system that includes a large number of components. 

They can become difficult to manage and require significant effort to complete. 
• These models do not consider partial failures and degraded modes. 
• The probability calculations are only as good as the inputs. Early in the lifecycle analysts of-

ten deal with estimates, and high confidence analysis requires more information about the 
system. This disadvantage will be alleviated somewhat when the models are kept up to date to 
better support analysis through information gained during each design iteration. 

• FTA and RBDs “cannot represent dependencies occurring in real systems, such as imperfect 
coverage, correlated failures, repair dependencies, non-zero detection/reconfiguration time, 
performance-reliability dependence, and phased mission system models” [Trivedi 2017]. 

• The FTA modeling approach is not useful for systems where components have interdepend-
encies. 
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6.3.2 State-Based Modeling Techniques 

The state-based technique we primarily explore is Markov modeling. We also summarize Petri 
nets and a few of the challenges of Markov models that Petri nets address. 

The basic components of Markov models are discrete and countable states and a set of transitions 
between these states. The model must always be in a state and cannot be in more than one state at 
a time. Also, from time to time the model must transition to other states. The states often represent 
configurations or operational states. In their introduction to Markov modeling, Boyd and Lau ex-
plain that when modelling for robustness, states can be normal operation, presence of faults, fail-
ure, and degraded modes. The transitions define where the model can go from one state to another 
and the length of time needed to go from one state to another, and the transition time can be con-
stant or time dependent [Boyd 1998]. For robustness, the transition rates are often related to fail-
ure rates and repair rates. 

A Markov process is stochastic, and probability distributions for the future behavior of a system 
depend only on the current state of the system and not on any previous state. A Markov chain is a 
Markov process that represents system behavior in terms of random transitions between discrete 
states. 

Markov models of systems can be represented through a transition probability matrix where each 
row is a state and each column represents the states that can be transitioned to from the current 
state. They are also represented as acyclic graphs for non-repairable systems and cyclic graphs for 
repairable systems. For systems that are non-repairable, the model’s prediction is the probability 
that the system has not experienced failure (e.g., reliability). For systems that are repairable, the 
prediction from the model is the probability that the system will be available or operational. The 
Markov models allow analysts to predict the probabilities that the system in question will be in 
undesirable states based on the current design, and this knowledge allows designers to make in-
formed decisions to reduce unacceptable probabilities. 

In models of Markov processes, time can be modeled as discrete (i.e., transitions occur at unit-
timed intervals, and a transition must occur at each interval) and represented as a discrete-time 
Markov chain (DTMC). Time can also be modeled as continuous (i.e., transitions can occur at any 
real timed interval) and represented as a continuous-time Markov chain (CTMC). CTMCs can be 
time homogeneous or nonhomogeneous. To be considered time homogenous, the CTMC must 
have the same holding time every time the process enters state x. When exiting state x, all possible 
transitions and their probabilities must remain the same. Nonhomogeneous CTMCs can be mod-
eled using Weibull distributions that allow for modeling of failure rates that vary over time (e.g., 
hardware burn-in and end of life). 

“Markov chains can be used to analyze system reliability in terms of error states, occurrences, and 
propagations” [Delange 2014]. We will first explore a simple example of a DTMC to estimate the 
probability of being in certain states after a number of steps for a repairable system. We will then 
explore a time-homogenous CTMC and use it to show a few iterations of analysis and refactoring 
to improve the prediction of certain characteristics. 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  48  
[Distribution Statement A] Approved for public release and unlimited distribution 

Our abstract DTMC example models a system that has three controllers, which each have the ca-
pacity to handle the management of 100 sensors and 50 actuators. This simple model can give an-
alysts a prediction of the probability that the system will be in degraded modes of operation. 

Let’s suppose we have the following scenario for degraded modes that we must satisfy: 

Scenario Part Value 

Source Internal 

Stimulus A controller fails.  

Artifact A controller 

Environment There are three controllers. One controller provides minimally acceptable service.  

Response The system continues to process inputs from 200 sensors and 100 actuators. 

Response Measure Minimally acceptable service is available greater than 99.99% of the time. 

The resulting model will have four states. The states are the following: all three controllers are 
fully operational with the system at full capacity; two controllers are operational, reducing capac-
ity; one controller is operational, further reducing system capacity; and all controllers are offline, 
resulting in no capacity to manage sensors and actuators. As we learn more about the system, ad-
ditional transitions could be added (e.g., two controllers are repaired at the same step, adding a 
transition from one controller being operational back to three being operational). All possible 
transitions from the current state to the potential next state must be equal to 1. The diagram and 
matrix in Figure 10 illustrate how our Markov process can be represented. 

 

Figure 10: Markov Model Representing the States That Correspond to System Capacity 
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The matrix above shows the capacity Markov model matrix (P) transition probabilities for the 
four states. The state transitions (in parentheses) are usually omitted but are included here for clar-
ity. This transition matrix was input into a DTMC simulation tool provided by the Technische 
Universität Clausthal Institute of Mathematics [Clausthal n.d.]. The results—the relative frequen-
cies of each state—are shown in Figure 11. 

 

Figure 11: Relative Frequencies Calculated for Each State in Our Markov Model from Our Initial Design 

What information does this analysis provide to an analyst? 
• There is a ~93.9% probability that the system is at full capacity (State 1 probability). 
• There is a ~99.7% probability that the system will be able to handle 200 sensors and 100 actu-

ators (State 1 and State 2 combined probabilities). 
• There is a ~0.3% probability that the system can only handle 100 sensors and 50 actuators 

(the State 3 probability). 
• We estimate a ~99.999% uptime, assuming uptime is defined as minimally acceptable service 

reflected by States S1, S2, and S3. The graph shows zero for State S4, but that appears to be 
an artifact of rounding. We do observe that in simulation State S4 was reached on occasion. 

• The initial design does fulfill the 99.99% availability of minimal service requirement defined 
in our scenario. 

We will now present a simple CTMC that models two redundant controllers. We will show the 
relationship between design decisions and how you can use modeling as an effective tool for ana-
lyzing the initial design. Then we will show how design changes can affect the predictions from 
the model. By modeling in this way, you can collect evidence that important quality attribute 
goals are met. Lastly, we illustrate how decisions made to support one quality attribute can have 
an impact on the quality attribute measures that you are currently analyzing, and analysts can 
therefore note tradeoffs. If designers understand the relative priorities of the two competing 
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qualities, then they can make design changes in a disciplined way and analyze their impact 
through the model. 

Let’s suppose we have a scenario that we must satisfy the following: 

Scenario Part Value 

Source Internal 

Stimulus A controller fails.  

Artifact A controller 

Environment There are two controllers. One controller is sufficient to process all critical features. 

Response The system continues to process all critical inputs. 

Response Measure Critical features are available 99.9% of the time. 

The inputs to the CTMC model are the transition rates in the transition rate matrix. The mean fail-
ure rate is .08 failures per hour, and the mean repair rate is 3 per hour. We add an assumption that 
components are repaired in the order they fail and that they are identical and fully synchronized. 
The model has no absorbing states; therefore, it is repairable. 

The CTMC states are as follows: 
• State 1, both controllers are operational. There are two transitions: (S1,S2) and (S1,S3). 
• State 2, Controller 1 fails, and Controller 2 is operational. There are two transitions: (S2,S1) 

and (S2,S4). 
• State 3, Controller 2 fails, and Controller 1 is operational. There are two transitions: (S3,S1) 

and (S3,S5). 
• State 4, both controllers fail, and Controller 1 fails first. There is one transition: (S4,S3). 
• State 5, both controllers fail, and Controller 2 fails first. There is one transition: (S5,S2). 

The diagram in Figure 12 represents the states and the transition rates. 
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Figure 12: CTMC State Transition Diagram and CTMC State Transition Matrix 

We now have all the inputs, and our model is set up. The transition matrix can be fed into a tool 
that supports CTMCs. We used the CTMC simulation tool provided by the Technische Universi-
tät Clausthal Institute of Mathematics for our simulation. 
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Figure 13: Relative Frequencies Calculated for Each of the States in Our Markov Model from Our Initial 
Design 

What information does this provide to an analyst? 
• There is a ~94.7% probability that both components are operational (State 1 probability). 
• ~5.1% of the time, only one component is operational (State 2 and State 3 combined probabil-

ity). 
• ~0.2% of the time, both components are down (State 4 and State 5 combined probability). 
• The uptime is ~99.8% (assuming uptime is defined as one component being operational and 

processing critical features). 
• The initial design does not fulfill the 99.9% availability of critical features defined in our sce-

nario. 

Given this result, the designers could now refactor the design to attempt to improve the availabil-
ity of critical features. The first step is to find the parameters that can be impacted through design 
changes. In this model the parameters are the failure rate of .08 per hour and the repair rate of 3 
per hour. The designers should therefore look for tactics that reduce the failure rate or reduce the 
restart time. For example, looking through the FTA that provided the initial failure rate, they 
might have discovered the following two causes: there were memory leaks in a subcomponent S1, 
causing hanging processes that led to failures. 

The designers then made two choices to address these causes: to use the substitution tactic by in-
tegrating a highly reliable commercial off-the-shelf product that implements the features of the S1 
and to improve the process monitoring, by adding more monitors, to restart problematic processes 
when faults are detected. Given these changes, they update the fault tree and estimate that these 
changes will reduce the failure rate to .07 per hour. 

After improving the failure rate by adding more process monitors and using substitution to reduce 
the number of failures, we now predict an improvement. 
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Figure 14: CTMC State Transition Matrix for the Modified Design 

 
Figure 15: Relative Frequencies Calculated for Each of the States in Our Markov Model from Our New 

Design Reducing the Failure Rate 

What information does this provide to an analyst? 
• There is a ~95.5% probability that both components are operational (State 1 probability). 
• ~4.4% of the time, only one component is operational (State 2 and State 3 combined probabil-

ity). 
• ~0.2% of the time, both components are down (State 4 and State 5 combined probability). 
• The overall uptime is ~99.8% (assuming uptime is defined as one component being opera-

tional and processing critical features). This has improved the design, but not enough to re-
duce the State 4 and 5 probability predictions to zero at 3 decimal points of precision. 

• The new design, while improved, does not fulfill the 99.9% availability of critical features de-
fined in our scenario. 

Given that the revised design has still not satisfied our scenario, we can examine contributors to 
restart time. The designers can search for approaches for other quality attributes that impact restart 
time. During this examination they might determine a few contributors to restart time: 
• Late binding – Many components are bound at startup. 
• There is an extensive use of configuration files. 
• A large cache is populated at startup. 
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Since modifiability has the same priority as availability, we will avoid tradeoffs that affect modifi-
ability (e.g., the use of late binding and configuration files) unless absolutely necessary. Perfor-
mance is always important, but in this case slightly less so than availability. Upon examining the 
cache, the designers conclude that many data items related to soft deadlines are cached at startup. 
The designers thus opt to take a slight latency hit to fetch those items on an as-needed basis, rather 
than pre-fetching and caching them. This incremental state resynchronization will lead to a 
tradeoff with slightly greater latency, but it will improve availability. They estimate this will in-
crease the repair rate to 4 per hour. 
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Figure 16:  CTMC State Transition Matrix for the Second Modification of the Design That Improves the 
Repair Rate 

 

Figure 17: Relative Frequencies Calculated for Each of the States in Our Markov Model from Our New 
Design Improving the Repair Rate 

What information does this provide to an analyst? 
• There is a ~96.6% probability both components are operational (State 1 probability). 
• ~3.4% of the time, only one component is operational (State 2 and State 3 combined probabil-

ity). 
• Less than 0.1% of the time, both components are down (State 4 and State 5 combined proba-

bility). The simulation did reach State 4 and 5, but less than .05% each. 
• There is now greater than ~99.9% uptime predicted (assuming uptime is defined as one com-

ponent being operational and processing critical features). The latest design change improved 
the design enough to reduce the State 4 and 5 probability predictions to zero at 3 decimal 
points of precision. 

• The new design does fulfill the 99.9% availability of critical features defined in our scenario. 
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This simple example illustrates the relationships between design decisions and key model parame-
ters that provide predictions of important system quality attribute characteristics for analysts. We 
also showed why it is important for designers and analysts to understand design decisions that af-
fect other quality attributes and the tradeoffs that can impact other response measures. The exist-
ing modifiability and performance approaches had a negative impact on availability, so the 
designers determined that a tradeoff needed to be made. In this case, they were able to modify the 
cache to improve startup time, at the cost of runtime latency. 

Below we will highlight some metrics that can be ascertained by Markov modeling and then list 
the strengths and weaknesses of this modeling. 

Characteristics/Metrics: 
• Uptime, downtime, calculating the number of steps or time spent in the states that correspond 

to failure 
• Probability of failure in a number of steps or time period from the current state 
• MTTF for non-repairable systems within a number of steps or time period from the current 

state 
• MTBF for repairable systems within a number of steps or time period from the current state 
• Percentage of operations or requests that need retries 
• Time to detect fault or failure or MTTD 
• Failover time 
• Failover success rate 
• Time spent in degraded modes of operation 
• % of time spent in degraded modes 

Advantages/Strengths: 
• Markov modeling simplifies the transitions between states. Since the Markov property states 

that the next possible step depends only on where you are now and not any previous steps, it 
is easier to predict the probability of being in a certain state in a number of transitions. 

• Many tools are available that support solving Markov models to abstract away complex math-
ematics. You only need to define your states and transition rates or probabilities. 

Disadvantages/Weaknesses: 
• A complete accounting of all possible states and transitions is often not possible. When for-

mulating a Markov model of a complex system, it is difficult to ensure that all the possible 
combinations of events in a subsystem have been considered. In our simple CTMC example, 
we had 5 states. If we expanded to model five controllers, we would need 32 states plus an 
additional number to track the order in which failures occurred. 

• The property of not relying on previous states and only the current state may not allow you to 
properly model your system. If a meaningful prediction relies on how or when you arrived in 
the current state, then more complex modeling techniques will be needed. 

Petri nets are often used to model systems with many components and alleviate, to some degree, 
the state management issues of Markov models. A Petri net is a directed graph with places and 
transitions. The places each define a capacity for tokens and represent conditions within the 
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system being modeled. The transitions represent events occurring in the system that may cause 
change in the condition of the systems. Arcs connect places to transitions and transitions to places. 
There are never arcs directly from place to place or from transition to transition. A Petri net is an 
n-tuple (set of places, set of transitions, input arcs, output arcs, or markings). 

We adopt the following definitions for modeling Petri nets [Bobbio 1990]: 
• Input arcs are directed arcs drawn from places to transitions. They represent the conditions 

that need to be satisfied for an event to be activated. 
• Output arcs are directed arcs drawn from transitions to places. They represent the conditions 

resulting from the occurrence of the event. 
• Input places of a transition are the set of places that are connected to the transition through 

input arcs. 
• Output places of a transition are the set of places to which output arcs exist from the transi-

tion. 
• Tokens are represented as dots or integers associated with places. 
• A marking of a Petri net is a vector listing the number of tokens in each place of the net. 

Every Petri net defines an initial marking. 
• When input places of a transition have the required number of tokens, the transition is ena-

bled. 
• An enabled transition may fire removing one token from each input place and depositing one 

token in each of its output places. 

Petri nets are also often extended by associating time with the firing of transitions. In a stochastic 
Petri net (SPN), the firing times are considered random variables. Our previous CTMC example 
assumed exponential distributions, which can be modeled by an SPN with the same assumption. 

Below is an example of an SPN with the assumption that the firing times are exponentially dis-
tributed. It is roughly equivalent to our CTMC Markov example of two components with failure 
and repair, minus the tracking of which component failed first. It is important to note that with the 
SPN we can model the example with two places instead of four states with the use of tokens. The 
complexity of the Petri net does not depend on the number of components. We could add tokens 
to model additional components and modify the initial marking. In this case, adding a third token 
in the operational place would model three components. “[T]he dynamic behaviour of the PN can 
be mapped into a time-continuous homogeneous Markov chain with state space isomorphic to the 
reachability graph of the PN” [Bobbio 1990]. These Petri nets are often converted to an underly-
ing CTMC for solving. Figure 18 shows the initial marking of both components as operational. 
Figure 19 shows one component failed and one operational. Figure 20 shows both components 
failed. 
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Figure 18: Two Components, Both Operational 

 

Figure 19: One Component Operational and One Failed 

 

Figure 20: Two Components, Both Failed 

There are extensions to SPNs that allow for more powerful modeling. We will summarize gener-
alized SPNs and colored Petri nets. 

A generalized SPN (GSPN) is used to model events that have extremely short times to occur, and 
it is useful to model them as instantaneous activities. The model is further extended to have 
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immediate transitions with zero firing times. All other transitions maintain their exponentially dis-
tributed firing times. Immediate timed transitions have a higher priority than any enabled time 
transition. If two or more immediate transitions are enabled, the firing is random with probabili-
ties assigned to each. 

Colored Petri nets (CPNs) enable powerful modeling. In a standard Petri net, tokens are indistin-
guishable and do not allow you to follow a token through the model. A colored Petri net can over-
come this by giving each token an attribute or data associated with it. The places, arcs, and 
transitions can have enabling functions (i.e., Boolean expressions that must evaluate to true), 
which depend on the color of the token. This refinement again reduces the number of places 
needed to model complex systems and allows for more detail in the model to reflect the system 
under study more accurately. 

We have now briefly summarized three extensions to Petri nets: SPNs, GSPNs, and CPNs. Note 
that the “resulting net with all these extensions can still be converted to a CTMC. However, there 
are tradeoffs with these extensions. Whereas these extensions make the task of modeling very 
simple and reduce the size of the net considerably, the complexity of understanding does in-
crease” [Malhotra 1995].  

6.3.3 Sample Tool Support for Robustness Modeling 

All the information in Table 5 is taken directly from the web pages describing the various tools. 

Table 5: Robustness Modeling and Analysis Tools 

Tool Name Modeling Techniques Supported License 

OSATE Supports the SAE Standard Aerospace Recommended 
Practice (ARP) 4761, Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne 
Systems and Equipment. The processes and techniques of 
the ARP4761 standard addressed by the tool are the Func-
tional Hazard Assessment, FTA, Failure Modes and Ef-
fects Analysis, and dependence diagrams, also referred to 
as RBDs. 

Open source 
https://osate.org 

PRISM PRISM can build and analyze several types of probabilistic 
models: 
• discrete-time Markov chains (DTMCs) 
• continuous-time Markov chains (CTMCs) 
• Markov decision processes (MDPs) 
• probabilistic automata (PAs) 
• probabilistic timed automata (PTAs) 
Extensions of these models are available with costs and 
rewards.  

Open source 
https://www.prismmodelchecker.org 

BlockSim ReliaSoft BlockSim provides a comprehensive platform 
for system reliability, availability, maintainability, and re-
lated analyses that allows you to model the most complex 
systems and processes using RBDs, FTA, or Markov dia-
grams.  

Commercial 
https://www.reliasoft.com/products/
blocksim-system-reliability-availabil-
ity-maintainability-ram-analysis-soft-
ware 

SHARPE,  
by Duke  
University 

SHARPE includes algorithms for analysis of fault trees, 
RBDs, acyclic series-parallel graphs, acyclic and cyclic 
Markov and semi-Markov models, GSPNs, and closed sin-
gle- and multi-chain products from queueing networks. 

Freely available for university us-
age; for company usage, there is 
contact information. 
https://sharpe.pratt.duke.edu 
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Tool Name Modeling Techniques Supported License 

GRIF,  
by Total 

The BFiab module is based on RBD modeling. 
The Tree module serves to model a system as a fault tree. 
The Markov module serves to model and compute small 
dynamic systems as Markov graphs. This module uses the 
analytical computation engine Albizia-Markov, which pro-
cesses multi-phase systems. 
The Petri module serves to model large, complex industrial 
systems using SPNs with predicates and assertions. 
The BStok module is used to model complex systems 
based on stochastic block diagrams. 
The Reseda module serves to model reliability networks. 

Commercial 
http://grif-workshop.com 

CPN tools Colored Petri nets GNU General Public License (GPL), 
Version 2 
http://cpntools.org/2018/01/15/simu-
lation-replications 

REALIST Within the modeling capability of REALIST using extended 
SPNs (ESPNs), extended colored stochastic Petri nets 
(ECSPNs), or conjoint system models (CSMs), many as-
pects of a modern technical system can be captured. 
Reliability structure, system and component states 
Constant failure rates, dynamic changing failure behavior 
Failure propagation, failure dependencies, aging, several 
operative states 

Contact is listed to obtain licensing 
information. 
https://www.ima.uni-
stuttgart.de/en/research/reliabil-
ity/realist/ 
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7 Playbook for an Architecture Analysis of Robustness 

This playbook outlines an approach to combine the checklists and questionnaires presented in the 
previous sections with information about mechanisms to analyze an architecture to validate the 
satisfaction of a robustness requirement. The playbook provides a process, illustrated with a run-
ning example, that will guide experts to perform architecture analysis in a more repeatable way. 

The process has three phases and seven steps. The Preparation phase gathers the artifacts needed 
to perform the analysis and evaluation. The Orientation phase uses the information in the artifacts 
to understand the architecture approach to satisfying the quality attribute requirement. The process 
ends with the Evaluation phase, when the analysts apply their understanding of the requirement 
and architecture solution approaches to make judgments about those approaches. The phases and 
steps are summarized in Table 6. 

Table 6: Phases and Steps to Analyze an Architecture 

Phase Step 

Preparation Step 1–Collect artifacts 

Orientation 

Step 2–Identify the mechanisms used to satisfy the requirement 

Step 3–Locate the mechanisms in the architecture 

Step 4–Identify derived decisions and special cases 

Evaluation 

Step 5–Assess requirement satisfaction 

Step 6–Assess impact on other quality attribute requirements 

Step 7–Assess the cost/benefit of the architecture approach 

The analysts might identify missing artifacts during the Preparation phase and missing or incom-
plete information within those artifacts during the Orientation Phase. At the end of each step in 
the Preparation and Orientation phases, the analysts must decide whether there is sufficient infor-
mation available to proceed with the process. 

This process can be applied at almost any point in the development lifecycle. The quality of the 
architecture artifacts—breadth, depth, and completeness—will inform the type of analysis and 
evaluation performed in Step 5 and the degree of confidence in the results. Early in the develop-
ment lifecycle, lower confidence may be acceptable, and the analyst can work with lower quality 
artifacts and simpler analyses, as suggested in Table 3. Later in the lifecycle, the analyst needs 
higher confidence and therefore higher quality artifacts and more and deeper analyses. 

7.1 Step 1–Collect Artifacts 

In this step, analysts collect the artifacts that they will need to perform the analysis. These include 
quality attribute requirements and architecture documentation. 

The first artifact an analyst needs is the robustness requirement to validate. The requirement must 
be stated so that it is measurable, for example, as a quality attribute scenario as discussed above. 
Let’s use variants of example scenarios 1 and 3 from Section 4.2, where we have specified the ar-
tifact as “Flight Management System.” Let’s call these Scenarios 5 and 6, respectively. 
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Scenario 5: Software does not report by deadline 

Scenario Part Value 

Source GPS is unavailable  

Stimulus GPS positioning is not reported by deadline 

Artifact Flight Management System 

Environment Normal operation 

Response The system detects the missed deadline, logs the error, and restarts reporting 
position from dead reckoning calculation 

Response  
Measure 

Detects fault within 2 ms and switches to dead reckoning within 200 ms to calcu-
late position (until GPS becomes available) 

Scenario 6: System resources reaching thresholds that predict overload 

Scenario Part Value 

Source Health monitor 

Stimulus Processor overheats and shuts down 

Artifact Flight Management System 

Environment Normal operation 

Response Failover to another CPU 

Response  
Measure 

Within 50 ms 

Next, the analyst needs to consider the system’s other quality attribute requirements. As noted 
above, architecture designs embody tradeoffs, and decisions that improve robustness may have a 
negative impact on the satisfaction of other important quality attribute requirements. In Step 6, the 
analyst will check that the architecture decisions made to satisfy this requirement do not adversely 
affect other quality attribute requirements, and more information about the complete set of quality 
attribute requirements means greater confidence in the results of that step. 

Finally, the analyst needs architecture documentation. Early in the architecture development 
lifecycle, the documentation may be just a list of mechanisms mapped to quality attribute require-
ments, perhaps identifying tradeoffs. As the architecture is refined, partial models or structural di-
agrams become available, accompanied by information about key interfaces, behaviors and 
interactions, and rationale that provides a deeper link between the architecture decisions and qual-
ity attribute requirements. When the architecture development iteration is finished, then the docu-
mentation should include complete models or structural diagrams, along with specification of 
interfaces, behaviors and interactions, and rationale. 

7.2 Step 2–Identify the Mechanisms Used to Satisfy the Requirement 

To begin the Orientation phase, there are several places to look to identify mechanisms used in the 
architecture. If the architecture documentation includes a discussion of rationale, that can provide 
unambiguous identification of the mechanisms used to satisfy a quality attribute requirement. 
Other activities include looking at the structural and behavior diagrams or models and recognizing 
architecture patterns. Naming of architecture elements may indicate the mechanism being used. 
The analyst may also look at the file structure and naming of source code repositories, if they 
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exist, to locate mechanisms. The analyst may need to use all of these to identify the mechanism or 
mechanisms that are being used to satisfy the robustness requirement. Frequently, multiple mech-
anisms are needed to satisfy a requirement [Kazman 1997]. If the analyst has access to the archi-
tect(s), this is an excellent time to use the tactics-based questionnaires, as described in Section 6.1. 
In a short period of time, using these questionnaires, the analyst can enumerate all of the relevant 
mechanisms chosen (and not chosen). 

Considering the example requirement above, “GPS positioning is not reported by deadline,” let’s 
assume that the project has not started development and that the architecture is largely conceptual 
in nature. Health and performance monitoring are specified as requirements, but the final selec-
tion of technologies has been delayed by a late discovery of an enterprise-wide common capabil-
ity that the team has recently been made aware of. The architecture team has created 
documentation that includes a requirement to monitor key elements and resources along with a 
summary of rationale justifying other decisions relating to robustness. The rationale states that the 
system will use a ping/echo mechanism to detect failures in critical elements along with hardware 
and software redundancy to achieve the robustness requirements for the flight management sys-
tem. The documentation also mentions the use of the Circuit Breaker pattern to reduce the likeli-
hood of repeated or cascading failures, thus improving overall system robustness. 

In a technical interchange meeting with architects, the analyst discovered that voting and analytic 
redundancy are being used for comparisons of important calculations for accuracy. Voting and an-
alytic redundancy were not mentioned in their rationale for robustness, but preliminary discus-
sions about a simple ping/echo has the architects thinking that this mechanism was more 
important in the satisfaction of their robustness requirements than they initially realized because it 
can help detect faulty states that a simple ping/echo would miss. Another mechanism is the use of 
executable assertions to help determine when and where a program is in a faulty state. 

The analyst performs a quick check to decide if the referenced mechanisms are likely to contrib-
ute to satisfying the robustness requirement. In this case, all mechanisms that are enumerated 
above are known to positively impact robustness measures. The architects describe six mecha-
nisms for robustness that seem to address the robustness requirements as they are currently under-
stood. 

In contrast, if the documented rationale (or the architect) stated that the architecture used a record 
and playback mechanism to achieve the above robustness requirements, this would raise a red flag 
since record and playback is usually associated with improving testability, but not robustness. 
The analyst might decide to pause the architecture analysis at this point and gather more infor-
mation from the architect. The point of this quick check is not to analyze the mechanism or deci-
sion in detail but simply to assess whether the architecture analysis is on the right track, in terms 
of the available information and the mechanisms that have been chosen, before devoting more ef-
fort to a deeper analysis. 

In some cases, the appropriateness of a mechanism is less clear. For example, the rationale for ro-
bustness design choices might specify that a load balancing mechanism is used. Load balancing 
can support robustness to some extent, but this mechanism by itself is usually insufficient since it 
only ensures that all resources are being used but ignores their health and utilization. In cases like 
this, the analyst should proceed carefully: The architect may have chosen an inappropriate mecha-
nism or used a mechanism in an inappropriate way. 
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7.3 Step 3–Locate the Mechanisms in the Architecture 

Following our example, the analyst needs to use the architecture documentation, an interview with 
the architect(s), or reverse-engineering to locate where these mechanisms are realized in the archi-
tecture. As seen in the tactics-based questionnaire, it is important to consider how a mechanism—
tactic or pattern—is implemented. 

Scenario 5 is concerned with a software element—the GPS—being unresponsive in the flight 
management system. The analyst may be able to look at the documentation and find a structural 
diagram sketch that includes where the health monitoring and redundancy are realized in the ar-
chitecture. With this diagram in hand, finding instances of the health monitoring—for example, 
using a ping/echo mechanism for detecting faults—should not be difficult because it is a major 
abstraction in the system. The analyst should also be able to locate some information, perhaps a 
diagram, that provides insight into which critical elements have been replicated—that is, which 
elements have two or more instances, using one of the redundancy tactics, that allow the system to 
failover to other hardware or software. Another useful artifact for identifying critical elements is a 
fault tree analysis. Such an analysis might have been created, for example, from an AADL (Archi-
tecture Analysis & Design Language) model of the system [Delange 2014].  

The analyst might next look for documentation relating to the hardware and software redundancy 
and circuit breaker mechanisms that describes how cascading failures are detected and prevented. 
In practice you may find this information in models, detailed designs, or higher level requirements 
statements. These mechanisms could be documented using, for example, sequence diagrams 
showing the path through the system when faults occur and accompanying annotations that detail 
the timing of each activation. In reality, it is often the case that important mechanisms are not spe-
cifically described in the architecture documentation but are discovered during interviews. In this 
case, during the technical interchange meeting the architects were describing the redundant ana-
lytics of both GPS and dead reckoning and using each as a check on the other for accuracy. The 
analysts note that this voting mechanism not only improves robustness, verifying that the elements 
are alive, but also can help determine whether the elements are operating according to their speci-
fications. 

Finally, the analyst must be able to conceptually integrate the mechanisms. The rationale for satis-
fying the requirement (e.g., GPS fails to respond) said that a redundancy pattern was used to allow 
failover to another alternative when a software element does not respond. This raises a question: 
Are all elements active, or is there a set of passive elements with only one active element at a 
time? This is an issue of how the system can recover from faults (and be resilient to changes in the 
environment), one of the categories of questions in the Architecture Analysis Checklist. One an-
swer could be that the multiple redundant elements are active and the remaining elements only be-
come active in a degraded mode. Another is a single active element and the health monitoring 
element switches to a passive element, making it the active element. However, the analyst finds 
that, in reality, the architecture is a hybrid where there are certain element types with only one ac-
tive element and others where multiple elements are active. 

Before finishing this step, the analysts should check that the mechanisms are being used in parts 
of the architecture that relate to the requirement that they are analyzing. To assess how well a 
mechanism contributes to satisfying a quality attribute requirement, it is not sufficient to stop after 
the sanity check in Step 2. That establishes only the presence of the mechanisms, not their 
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suitability or adequacy for meeting the response goal of the scenario being considered. The ana-
lysts must identify where and how the mechanism was instantiated in the architecture to assess 
whether it will have the desired effect. For example, they find a ping/echo mechanism, but it is 
used merely to determine that an element is alive and can respond as stated previously. This use 
of the mechanism, without self-diagnostics, health checks, or other tests of accuracy, is not likely 
to fully support the robustness required for the flight management system. 

7.4 Step 4–Identify Derived Decisions and Special Cases 

Most architecture mechanisms are not simple, one-size-fits-all constructs. The instantiation of a 
mechanism requires making a number of decisions, with some of those decisions involving choos-
ing and instantiating other mechanisms. For instance, our example employs a redundancy type of 
pattern for hardware and software. One set of decisions about using that mechanism for software 
is concerned with details of the spare relating to state synchronization derived from the mapping 
among architectural elements category in the Architecture Analysis Checklist. This case includes 
several alternatives: 
• Does the system employ active redundancy (hot spare)? In active redundancy, all nodes in a 

protection group receive and process identical inputs in parallel, allowing redundant spares to 
maintain synchronous state with the active element(s). 

• If the system uses passive redundancy, how does it employ state resynchronization from ac-
tive to standby elements? 

• Does the system employ spares (cold spares) that are out of service until needed? How does 
the architect determine from, where, and how state will be copied or transferred to the cold 
spare when it is started? 

If the architect decided to support passive redundancy (the second alternative above), then there is 
a set of subsequent derived decisions about how the synchronization is realized. The first is the 
frequency of updates for synchronization. Would there be a snapshot of the state sent at specific 
intervals, or would the passive elements receive messages of all state changes? The second de-
rived decision would be where in the architecture is the responsibility to control routing to the ac-
tive element so that all incoming inputs are processed by the newly activated element?  

To assess how well a mechanism contributes to satisfying a quality attribute requirement, it is not 
sufficient to stop after the quick check in Step 2. The analyst must evaluate how the mechanism 
was instantiated, which usually involves tracing the decisions about the mechanism instantiation 
to the derived decisions and the selected alternatives that address them. And the analyst must en-
deavor to determine whether the mechanism, as envisioned and instantiated, is likely to actually 
meet the requirement. 

As analysts identified the mechanisms in Step 3 above, they also started to identify derived deci-
sions. For example, in the options outlined above, the analysts identified that the synchronization 
frequency will need to be tuned as the system evolves. Hence, they should pay attention to this pa-
rameter to determine the impact on the passive elements’ ability to process inputs in a timely 
manner that will achieve the robustness objectives of the system. 

The analyst’s next derived decision might be “Do we use simple ping/echo, or do we have a more 
complex ping/echo—perhaps employing a monitoring pattern—that is in effect a small diagnostic 
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test?” This is a detect faults decision in the Architecture Analysis Checklist. For the robustness 
requirement that the analyst is validating, good answers to this question include the following: 
• The system supports self-tests for correct operation. 
• The system uses voting for critical elements to ensure they are not in a faulty state. 
• The system has a well-defined fault tree analysis, and exception handling is defined for all 

known high-impact faults. 

If these statements are all true, you would have reasonably high confidence that fault detection is 
adequate. (On the other hand, if the driving quality attribute requirement was, for example, to im-
prove resource utilization rather than robustness, then the architect might have chosen to forgo the 
expense of self-testing, health monitoring, and voting. The removal of such mechanisms would 
limit the fault detection capability to determining if an element is alive and healthy, thereby im-
pacting confidence in robustness for faulty states.) 

The decision to use voting and analytic redundancy has other derived decisions. The first decision 
is which elements will be considered critical enough to require voting and analytic redundancy so 
that there will be a high level of confidence that features are working as intended. This decision 
impacts the system’s ability to switch to a redundant positioning calculation within 200 ms. The 
software may also use a predictive model to monitor the health of certain less critical elements to 
ensure that the system is operating within nominal parameters, and the predictive model could 
make some instances of voting and analytic redundancy unnecessary. 

Another derived decision related to voting is whether the removal from service tactic should be 
applied when erroneous inputs are detected (see the prevent faults category in the Tactics-Based 
Questionnaire, Section 6.1). When voting indicates a problem, then a corrective action such as re-
moving the element from service can have a strong impact on robustness. This is especially true 
when a system is already degraded so that scarce resources can be applied to the critical and fully 
operational elements. 

Finally, some mechanisms have special cases that warrant special attention. For example, the 
newly identified health monitoring option uses a rule-based throttling mechanism to manage poli-
cies for degradation when resources are compromised, maintaining the most critical system func-
tions in the presence of element failures and dropping less critical functions. This can lead to 
increased complexity. A rule-based throttling mechanism may be overkill in instances where the 
criticality of the functions is relatively simple and straightforward. In other instances, where the 
criticality can change during operation or when capabilities change, a rule-based system can make 
the system easier to maintain due to its inherent flexibility. 

In this example, analysts should pay attention to synchronization frequencies of the redundancy 
(i.e., active, passive, spare) strategy chosen so that resources are used efficiently and so that im-
portant measures such as failover time can be met. A fully synchronized active spare is already 
fully operational so messages or requests can be switched very quickly. 

Another important concern is the self-tests that would enable the system to detect more faulty 
states in the system than a simple ping/echo. This is another decision that will impact the time it 
takes to detect faulty states that would be missed using a simple ping/echo mechanism. 
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7.5 Step 5–Assess Requirement Satisfaction 

The analyst has completed preparation and orientation and begins the Evaluation phase. The anal-
ysis performed to assess whether the architecture satisfies the quality attribute requirement will 
depend on the nature of the requirement and the mechanism(s) being applied. For example, the 
analyst assesses a quality attribute requirement for robustness to the loss of a processor, and the 
mechanism used is a hardware redundancy pattern. The analysis should include checks for detec-
tion and failover (e.g., rerouting messages), which introduces new responsibilities. The analysis 
should also include the criticality of features and the envisioned degraded modes of operation.  

Recall that the requirement in Scenario 5 is that a GPS is unavailable. Our measures are “Detect 
fault within 2 ms and switch to dead reckoning within 200 ms.” The architecture mechanisms 
identified are the ping-echo, voting and analytic redundancy, hardware and software redundancy, 
and executable assertions tactics, and the Health Monitoring and Circuit Breaker patterns. In Step 
4, the analyst identified several derived decisions that need to be considered in the analysis: 
• Does the system use active, passive, or spares for redundancy?  
• Does the system support simple ping/echo or more sophisticated self-tests? 
• What is the frequency of ping/echo? 
• Which capabilities will use voting, and will outliers use the removal from service tactic? 
• Is there a rule-based system for managing policies for critical capabilities and degraded 

modes? 

The analyst might begin by examining the realization of the Health Monitoring pattern and 
ping/echo tactic—and could ask the following questions. What type of analysis has been com-
pleted on the common capability recently discovered for Health Monitoring? How will ping/echo 
be implemented? The architect acknowledges there has not been time to complete analysis on the 
new health monitoring alternative (it should be noted that the architect plans to look at analysis of 
other systems that use the element), and a simple ping/echo response implementation at to-be-de-
termined frequencies is documented in the architect’s rationale. The analysts record the following 
issues: 
• Issue 1: There has not been time to complete any significant analysis on the impact of switch-

ing from the previously selected element to the Health Monitoring common capability. This 
alternative was discovered during technical interchange meetings when constraints from the 
enterprise architecture were brought up and the alternative was first mentioned. Since health 
monitoring is a key capability for robustness, the impact of this change on the scenario re-
sponse measures is not known. This is an important omission that could have been avoided 
through architectural governance practices specifically relating to knowledge management. 
The stakeholders have acknowledged that often key documents are out of date and not 
properly disseminated.  

• Issue 2: The simple response version of ping/echo may miss important faulty states of critical 
elements and will be revisited by the architecture team. 

• Issue 3: The ping/echo frequency may impact resource utilization and needs to be better de-
fined. 
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This analysis thread is based on an observation that the team was given an alternative solution just 
a few days before the analysis and that they had only done superficial thinking on other important 
tactics (e.g., ping/echo). 

Continuing our example, the analysts find that they were given conflicting answers when asking 
how the system would detect and then handle elements that return erroneous inputs when making 
calculations. While pulling this thread, some mentioned self-testing to detect erroneous inputs, 
which was not documented in the architecture. Others focused on the example of using voting to 
detect erroneous inputs, specifically multiple GPS positioning and multiple dead reckoning calcu-
lations. A related decision to support degraded modes disables dead reckoning calculations in the 
event of hardware failure, as dead reckoning is considered to be a lower criticality function. This, 
however, reduces the confidence in the voting mechanism since it reduces the number of voters. 
The analyst records the issues: 
• Issue 4: Handling of elements that provide erroneous input has not been completely designed. 
• Issue 5: Voting loses inputs in degraded modes since dead reckoning calculations are not con-

sidered critical until the GPS is unavailable, and calculations are disabled when hardware 
fails. 

• Issue 6: No analysis was completed to determine how long it would take to restart dead reck-
oning calculation in degraded modes of operation when GPS becomes unavailable.  

In this simple example, the analyst rapidly identified six issues where architecture decisions im-
pact the ability to achieve the desired response measures in Scenario 5. Some of the issues, such 
as Issue 1 where a new alternative must be considered, should be carefully managed, and analysis 
of the alternatives must be done before implementation. Other issues, such as Issue 3, can be man-
aged by experimentation. They plan to use similar systems built to experiment with ping/echo fre-
quency and adjust the frequencies using the similar system’s simulators to assess the impact on 
resource utilization. 

7.6 Step 6–Assess Impact on Other Quality Attribute Requirements 

Architecture decisions rarely affect just one quality attribute requirement. The tradeoffs inherent 
in design decisions mean that the mechanisms and decisions that the analyst assessed in Step 5 
may be detrimental to the satisfaction of other quality attribute requirements. 

Typical tradeoffs impact software performance (throughput or latency), testability, robustness, 
availability, maintainability, and usability. In Step 1–Collect Artifacts, the analysts collected other 
quality attribute requirements that were available at this point in the development lifecycle. Now, 
they will scan those and select the ones that might be impacted by the architecture mechanisms 
and decisions analyzed in Step 5–Assess Requirement Satisfaction. For example, there may be 
quality attribute requirements that cover concerns such as the following: 
• Latency and resource utilization will be impacted by ping/echo using system resources (CPU 

and network bandwidth). Key decisions to be assessed revolved around defining the fre-
quency of the ping/echo for health monitoring and the complexity of the ping message trans-
ferred.  
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• If the voting mechanism is implemented in hardware, then it is likely to be fast and highly re-
liable (particularly if it is simple, as most voters are), but at the cost of decreased modifiabil-
ity. 

• Accuracy and timeliness can be impacted when critical capabilities consume resources used 
by other capabilities. Reporting GPS data and defaulting to dead reckoning when GPS is una-
vailable would be critical to supplying accurate and timely position information to pilots. The 
flight management system supports degraded modes of operations where the dead reckoning 
calculation is halted, to preserve limited resources for other critical features, when system re-
source thresholds are reached or failures are present. The accuracy and timeliness of position 
information can become stale when the system is already in a degraded mode and then the 
GPS becomes unavailable. There would be a delay since the system is required to restart dead 
reckoning calculations until GPS data is once again available, resulting in longer than normal 
latency for refreshing position. 

• Degraded modes of operation can be complex and may need to be revised as the properties of 
elements and hardware change during upgrades. An example change for degraded modes 
could occur when changing from a regular GPS signal to an encrypted GPS signal requiring 
additional CPU to process. Since the GPS now requires more resources, other resource alloca-
tions might need to change. Suppose GPS is more critical than altitude when the system is at 
37,000 feet and the system experiences a processor failure requiring degraded modes of oper-
ation. In this case, the system could change the altitude refresh rate or the number of redun-
dant altitude calculations to make more resources available for GPS now that it requires more 
resources for decrypting the GPS signal. 

• Latency can be impacted by the selection of hardware, specifically restrictions on sources. 
For some use cases, choices are being constrained to a trusted foundry. These processors may 
take a long time to be fabricated and often have lesser processing capability than those com-
mercially available, impacting overall latency.  

• The use of the Circuit Breaker pattern that was found in the rationale for our maintainability 
analysis also supports robustness by isolating failures that occur in critical elements by return-
ing error codes as soon as a faulty state is detected. This is helpful in a couple of ways. First, 
the system does not waste resources attempting calculations in a faulty element until it is re-
stored to health. Second, the error codes returned provide detailed information to the Health 
Monitor so that the correct actions can be taken to restore the element to health. The wrapper 
used to implement the Circuit Breaker has a slight impact on latency. 

In this step, the analyst assesses how the mechanisms and decisions support detecting faults and 
switching to other capabilities for the satisfaction of scenarios related to robustness. In addition, 
Step 6 focuses on other quality attributes and concerns. For each requirement, the analysis may be 
fast (e.g., ping frequency versus resource utilization) or more involved (e.g., assessing the restart 
time when rolling back during significant updates). In any case, the analyst should expect to find 
at least a couple of additional issues. 
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7.7 Step 7–Assess the Costs/Benefits of the Architecture Approach 

In carrying out the steps leading up to this point, the analyst should have developed a good under-
standing of the essential challenges in satisfying the quality attribute requirement, the approaches 
taken by the architect (choice of mechanisms, instantiation of the mechanisms, and how derived 
concerns are addressed), and the tradeoffs embodied in the approaches taken. 

Any architecture approach adds new elements, interactions, or responsibilities and makes the so-
lution more complicated. Some approaches add new types of elements and interactions and in do-
ing so may make the solution substantially more complex. There is a level of complexity needed 
to solve real-world problems—this is unavoidable. The final step is to judge whether the complex-
ity (and hence additional cost) introduced by this architecture approach is necessary and appropri-
ate. This is a cost/benefit analysis. In some cases, the answer will be clear: in our example, if the 
elements are simple and have only a few states, then a simple ping/echo would suffice. If the ele-
ments are complex with many possible faulty states, then the complexity of self-diagnostics 
would be worth the effort 

Often the cost/benefit analysis is not clear, but probing the design space and the design decisions 
taken with this analytical perspective in mind is still worthwhile as it will catalyze important anal-
ysis questions. 

Sidebar: Assessing Brittleness 

In this report, we have primarily focused on aspects of robustness that are related to reliability 
and availability. However, as we discussed briefly in Section 2, an architecture can be robust 
along other dimensions as well: it can be robust with respect to future modifications, accommo-
dating them in a way that requires minimal disruption to the architecture (and, ideally, minimal 
effort); it can be robust with respect to spikes in demand at run-time, allowing resources to 
scale up without requiring substantial human intervention; it can be robust with respect to a 
change in its environment, allowing the system to, for example, be ported to a different operat-
ing system or processor with low effort and little impact to the majority of the code base. And 
so forth. 

In these senses, and in these contexts, an architecture can be designed to be malleable, not brit-
tle, with respect to changes in its stimuli or environment. How would we analyze for such a 
quality? Given that this broader notion of robustness encompasses characteristics consistent 
with maintainability, integrability, and so forth, the specific mechanisms for dealing with them 
and the specific analyses to probe them are beyond the scope of this report. We can, however, 
suggest three broad strategies for gaining insight into the brittleness of an architecture. They 
involve the use of (1) growth and exploratory scenarios, (2) metrics, and (3) tactics-based ques-
tionnaires. We briefly discuss the use of each of these strategies. 

Growth and exploratory scenarios are speculative; they speculate on possible future states of an 
architecture or possible future stresses on an architecture. They also assist in making a design 
decision when there are multiple options (in which case we prefer the option that is sufficient 
for the anticipated system but also can support growth with little impact). We have greater con-
fidence that growth scenarios will come to pass because, by definition, these describe planned 
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or expected dimensions of system growth. Exploratory scenarios, as their name implies, are 
much less certain. But consideration of such scenarios allows an analyst or architect to gain in-
sight into how easily they will be accommodated. If most or all growth and exploratory scenar-
ios present significant challenges and risks, then the architecture is brittle, at least with respect 
to that set of scenarios.  

Architectural metrics are meant to measure characteristics of an architecture that correlate with 
a desired outcome. For example, in the Maintainability report in this series we discussed the 
use of the Decoupling Level metric, which measures how well an architecture is decoupled into 
independent modules, as a way to gain insight into the maintainability of an architecture [Kaz-
man 2020b]. Assuming that a metric has been empirically validated and that the metric 
measures something you actually care about, it can provide broad insight into an architectural 
characteristic. Metrics are, by their nature, the complement of scenarios. Scenarios give you 
deep but narrow insight. Metrics provide broad but shallow insight.  

Finally, tactics-based questionnaires allow an analyst to gain insight into the architectural ap-
proaches taken and not taken. This insight can be gained in a short time (typically around one 
hour per quality attribute analyzed) with a modest expenditure of effort. While this insight will 
not result in precise analyses, it will reveal where the architectural effort has been placed with 
respect to this quality attribute and any glaring omissions. This knowledge can help an analyst 
assess the likelihood that an architecture is brittle with respect to the quality under considera-
tion. 

Given that all three of the above techniques are limited, given that they are relatively inexpen-
sive, and given that they provide different kinds of insights, we recommend using all of them. 
Together they can give insight into the likelihood of brittleness with respect to qualities of in-
terest.  
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8 Summary  

In this report, we have defined the quality attribute of robustness and focused on analyzing the 
challenges of achieving robust systems, and analyzing for robustness, based on an understanding 
of architectural mechanisms and their characteristics.  

We have provided a set of sample scenarios for robustness and, from these and other examples, 
inferred a general scenario. This general scenario can be used as an elicitation device and also 
helps with analysis as it delineates the response measures that stakeholders will care about when 
they consider this quality attribute. We have also described the architectural mechanisms—tactics 
and patterns—for robustness. These mechanisms are useful in both design—to give a software ar-
chitect a vocabulary of design primitives from which to choose—and in analysis, so an analyst 
can understand the design decisions made, or not made, their rationale, and their potential conse-
quences. 

To address the needs of analysts, we have described a set of analytical tools and discussed the ar-
tifacts upon which each of these analyses depends and the stage of the software development 
lifecycle in which each of these analyses could be employed.  

In addition, we have provided a “playbook” for applying an architecture analysis for robustness. 
This playbook combines the checklists and questionnaires with information about architectural 
mechanisms to analyze an architecture to validate the satisfaction of a robustness requirement. 

Finally, it must be emphasized that, in this report, we have focused on an aspect of robustness that 
dealt with an architecture’s response to anticipated faults and failures. While this dimension is 
clearly important to system success, it is not the only way in which an architecture can be robust. 
To get insight into the other aspects of robustness that we mentioned in Section 2 of this report 
requires us to think about other quality attributes and their tradeoffs. We can use exploratory sce-
narios, metrics, and tactics-based questions, as was discussed in Sections 6 and 7, to get insight 
into such tradeoffs.  
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9 Further Reading 

The original tactics on which much of this report are based were first described in a paper by 
Scott and Kazman [Scott 2009] and later elaborated in the book Software Architecture in Practice 
[Bass 2012].  

For a discussion of the aspects of architectural robustness that are related to maintainability, such 
as being robust with respect to unknown changes in the future, see the Maintainability report in 
this series [Kazman 2020b]. 

More information on Petri nets can be found in work by Malhotra and Trivedi [Malhotra 1995]. A 
general introduction to Markov chains can be found in the book Markov Chains [Gagniuc 2017]. 
Fault modeling in AADL has been described in the work of Delange and colleagues [Delange 
2014]. 

 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  73  
[Distribution Statement A] Approved for public release and unlimited distribution 

Bibliography 

URLs are valid as of the publication date of this document. 
 

[Avizienis 1985]  
Avizienis, A. The N-Version Approach to Fault-Tolerant Software. IEEE Transactions on Soft-
ware Engineering. Volume Se-I 1. Issue 12. December 1985. Pages 1491–1501. 

[Avizienis 2001]  
Avizienis, A.; Laprie, J.; & Randall, B. Fundamental Concepts of Dependability. Tech. Rep. 
1145. University of Newcastle. 2001. 

[Baker 2008]  
Baker, J.; Schubert, M.; & Faber, M. On the Assessment of Robustness. Structural Safety. Vol-
ume 30. Issue 3. Pages 253–267. May 2008. 

[Bass 2012] 
Bass, L.; Clements, P; & Kazman, R. Software Architecture in Practice, 3rd ed. Addison-Wesley. 
2012. 

[Bellomo 2015] 
Bellomo, S.; Gorton, I.; & Kazman, R. Insights from 15 Years of ATAM Data: Towards Agile 
Architecture. IEEE Software. Volume 32. Number 5. 2015. Pages 38–45. 

[Binder 2000]  
Binder, R. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley. 2000. 

[BKCASE 2018] 
Body of Knowledge and Curriculum to Advance Systems Engineering. System Requirements. In 
Guide to the Systems Engineering Body of Knowledge (SEBoK). 2018. https://www.se-
bokwiki.org/wiki/System_Requirements  

[Bobbio 1990]  
Bobbio, A. System Modelling with Petri Nets. In System Reliability Assessment. Colombo, A. & 
Saiz de Bustamante, A. (eds.). Kluwer. Pages 103–144. 1990. 

[Bodson 1994]  
Bodson, M.; Lehoczky, J.; Rajkumar, R.; Sha, L.; & Stephan, J. Analytic Redundancy for Soft-
ware Fault-Tolerance in Hard Real-Time Systems. In Foundations of Dependable Computing. 
Koob, G. M. & Lau, C. G. (eds.). Kluwer. Pages 183–212. 1994. 

[Bolch 2006]  
Bolch, G.; Greiner, S.; de Meer, H.; & Trivedi, K. S. Queuing Networks and Markov Chains, 2nd 
ed. Wiley. 2006. 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  74  
[Distribution Statement A] Approved for public release and unlimited distribution 

[Boyd 1998]  
Boyd, M. & Lau, S. An Introduction to Markov Modeling: Concepts and Uses. NASA. 1998. 
https://ntrs.nasa.gov/search.jsp?R=20020050518 

[Cepin 2011]  
Cepin, M. Assessment of Power System Reliability. Springer. 2011. 

[Cervantes 2016]  
Cervantes, H. & Kazman, R. Designing Software Architectures: A Practical Approach. Addison-
Wesley. 2016. 

[Clausthal n.d.]  
Technische Universität Clausthal Institute of Mathematics. Simulation of a Homogeneous Markov 
Chain (in Discrete Time). https://www.mathematik.tu-clausthal.de/en/mathematics-interac-
tive/simulation/markov-chain-discrete/ 

[Clements 2010]  
Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.; Nord, R.; & 
Stafford, J. Documenting Software Architectures: Views and Beyond, 2nd ed. Addison-Wesley. 
2010. 

[Delange 2014]  
Delange, Julien; Feiler, Peter; Gluch, David; & Hudak, John. AADL Fault Modeling and Analysis 
Within an ARP4761 Safety Assessment. CMU/SEI-2014-TR-020. Software Engineering Institute, 
Carnegie Mellon University. 2014. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=311884 

[DIB 2019] 
Defense Innovation Board. Software Is Never Done: Refactoring the Acquisition Code for Com-
petitive Advantage. DoD. 2019. https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE_REFACTORINGTHEACQUISITIONCODEFORCOMPETI
TIVEADVANTAGE_FINAL.SWAP.REPORT.PDF 

[Gagniuc 2017]  
Gagniuc, P. Markov Chains: From Theory to Implementation and Experimentation. Wiley. 2017. 

[ISO/IEC 2011]  
International Organization for Standardization and International Electrotechnical Commission. 
Systems and software engineering — Systems and software Quality Requirements and Evaluation 
(SQuaRE) — System and software quality models. ISO/IEC 25010:2011. ISO. 2011. 

[Kazman 1994] 
Kazman, R.; Abowd, G.; Bass, L.; & Webb, M. SAAM: A Method for Analyzing the Properties 
of Software Architectures. In Proceedings of the 16th International Conference on Software Engi-
neering. Sorrento, Italy. ACM. 1994. Pages 81–90. 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  75  
[Distribution Statement A] Approved for public release and unlimited distribution 

[Kazman 1997] 
Kazman, R.; Clements, P.; Bass, L.; & Abowd, G. Classifying Architectural Elements as a Foun-
dation for Mechanism Matching. In COMPSAC ’97: Proceedings of the 21st International Com-
puter Software and Applications Conference. Washington, DC. IEEE Computer Society. 1997. 
Pages 14–17. 

[Kazman 2020a]  
Kazman, Rick; Bianco, Philip; Ivers, James; & Klein, John. Integrability. CMU/SEI-2020-TR-
001. Software Engineering Institute, Carnegie Mellon University. 2020. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=637375 

[Kazman 2020b]  
Kazman, Rick; Bianco, Philip; Ivers, James; & Klein, John. Maintainability. CMU/SEI-2020-TR-
006. Software Engineering Institute, Carnegie Mellon University. 2020. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=650480 

[Klein 2015]  
Klein, J. & Gorton, I. Design Assistant for NoSQL Technology Selection. In Proceedings of the 
First International Workshop on Future of Software Architecture Design Assistants. ACM. 2015. 
Pages 7–12. 

[Malhotra 1995]  
Malhotra, M. & Trivedi, K. S. Dependability Modeling Using Petri Nets. IEEE Transactions on 
Reliability. Volume 44. Issue 3. Pages 428–440. September 1995. 

[NRC 2015]  
National Research Council. Reliability Growth: Enhancing Defense System Reliability. National 
Academies Press, 2015. https://doi.org/10.17226/18987 

[Nygard 2017]  
Nygard, Michael. Release It! Design and Deploy Production-Ready Software. Pragmatic Pro-
grammers. 2017. 

[ODASD 2017] 
Office of the Deputy Assistant Secretary of Defense. Initiatives: Modular Open Systems Ap-
proach. 2017. https://www.dsp.dla.mil/Programs/MOSA/ 

[Padilla 2019]  
Padilla, M.; Davis, J.; & Jacobs, W. Comprehensive Architecture Strategy (CAS). The Open 
Group. September 2019. https://www.opengroup.us/face/documents.php?ac-
tion=show&dcat=87&gdid=21082 

[Reliability Analytics 2010–2020]  
Reliability Analytics Toolkit. Reliability Analytics. 2010–2020. https://reliabilityanalyt-
icstoolkit.appspot.com 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  76  
[Distribution Statement A] Approved for public release and unlimited distribution 

[Scott 2009]  
Scott, James & Kazman, Rick. Realizing and Refining Architectural Tactics: Availability. 
CMU/SEI-2009-TR-006. Software Engineering Institute, Carnegie Mellon University. 2009. 
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9087 

[Sha 1998]  
Sha, L.; Goodenough, J.; & Pollak, B. Simplex Architecture: Meeting the Challenges of Using 
COTS in High-Reliability Systems. CrossTalk. Pages 7–10. April 1998. 

[Shahrokni 2013]  
Shahrokni, A. & Feldt, R. A Systematic Review of Software Robustness. Information and Soft-
ware Technology. Volume. 55. Number 1. Pages 1–17. January 2013. 

[Sussman 2007]  
Sussman, G. J. Building Robust Systems: An Essay. 2007. http://citeseerx.ist.psu.edu/view-
doc/summary?doi=10.1.1.113.1324  

[SWEBOK 2014]  
Bourque, P. & Fairley, R. E. (eds.). Guide to the Software Engineering Body of Knowledge, Ver-
sion 3.0. IEEE Computer Society. 2014. https://www.computer.org/education/bodies-of-
knowledge/software-engineering 

[Trivedi 2016]  
Trivedi, K. S. Probability and Statistics with Reliability, Queuing, and Computer Science Appli-
cations, 2nd ed. Wiley. 2016. 

[Trivedi 2017]  
Trivedi, K. S. & Bobbio, A. Reliability and Availability: Modeling, Analysis, Applications. Cam-
bridge University Press. 2017. 

[Vesely 2002]  
Vesely, W.; Dugan, J.; Fragola, J.; Minarick, J.; & Railsback, J. Fault Tree Handbook with Aero-
space Applications. NASA. 2002. 
http://www.mwftr.com/CS2/Fault%20Tree%20Handbook_NASA.pdf  

[Wang 2001]  
Wang, C.; Sklar, D.; & Johnson, D. Forward Error-Correction Coding. Crosslink. Volume 3. Issue 
1. Pages 26–29. 2001. 

[Yang 2007]  
Yang, G. Life Cycle Reliability Engineering. Wiley. 2007. 

 



 

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY   
[Distribution Statement A] Approved for public release and unlimited distribution 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
1. AGENCY USE ONLY 

(Leave Blank) 
2. REPORT DATE 

March 2022 
3. REPORT TYPE AND DATES 

COVERED 
Final 

4. TITLE AND SUBTITLE 
Robustness 

5. FUNDING NUMBERS 
FA8702-15-D-0002 

6. AUTHOR(S) 
Rick Kazman, Phil Bianco, Sebastián Echeverría, and James Ivers 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 
CMU/SEI-2022-TR-004 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
SEI Administrative Agent 
AFLCMC/AZS  
5 Eglin Street 
Hanscom AFB, MA  01731-2100 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
n/a 

11. SUPPLEMENTARY NOTES 
 

12A DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 
 

13. ABSTRACT (MAXIMUM 200 WORDS) 
This report summarizes how to systematically analyze a software architecture with respect to a quality attribute requirement for robust-
ness. The report introduces the quality attribute of robustness and common forms of robustness requirements for software architecture. 
It provides a set of definitions, foundational concepts, and a framework for reasoning about robustness and the satisfaction of robust-
ness requirements by an architecture and by a system that realizes the architecture. It describes a set of architectural mechanisms—
patterns and tactics—that are commonly used to satisfy robustness requirements. It also provides a set of steps that an analyst can use 
to determine whether an architecture documentation package provides enough information to support analysis and, if so, to determine 
whether the architectural decisions made contain serious risks relative to robustness requirements. An analyst can use these steps to 
determine whether those requirements, represented as a set of scenarios, have been sufficiently well specified to support the needs of 
analysis. The reasoning around this quality attribute should allow an analyst, armed with appropriate architectural documentation, to 
assess the robustness risks inherent in today’s architectural decisions, in light of tomorrow’s anticipated needs. 

14. SUBJECT TERMS 
architecture analysis, robustness, quality attributes, quality attribute requirements, software ar-
chitecture 

15. NUMBER OF PAGES 
84 

16. PRICE CODE 
 

17. SECURITY CLASSIFICATION OF 
REPORT 
Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
Unclassified 

20. LIMITATION OF 
ABSTRACT 
UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 
298-102 

 

 

  


	Abstract
	1 Goals of This Document
	2 On Robustness
	3 Evaluating the Robustness of an Architecture
	3.1 Measuring Robustness
	3.2 Reasoning About Robustness Properties
	3.3 Operationalizing the Measurement of Robustness

	4 Robustness Scenarios
	4.1 General Scenario for Robustness
	4.2 Example Scenarios for Robustness
	4.2.1 Scenario 1: System Initialization Times Out
	4.2.2 Scenario 2: Software Fault and Recovery
	4.2.3 Scenario 3: Resource Threshold Is Approached
	4.2.4 Scenario 4: Hardware Failure and Restart


	Sidebar: Scenarios as Architectural Test Cases
	Sidebar: Architecting for the Unknown with Growth and Exploratory Scenarios
	5 Mechanisms for Achieving Robustness
	5.1 Tactics
	5.1.1 Detect Faults
	5.1.2 Recover from Faults
	5.1.3 Prevent Faults

	5.2 Patterns
	5.2.1 Process Pairs
	5.2.2 Triple Modular Redundancy
	5.2.3 N+1 Redundancy
	5.2.4 Circuit Breaker
	5.2.5 Recovery Blocks
	5.2.6 Forward Error Recovery
	5.2.7 Health Monitoring
	5.2.8 Throttling


	Sidebar: Designing for Unknown Unknowns
	6 Analyzing for Robustness
	6.1 Tactics-Based Questionnaire
	6.2 Architecture Analysis Checklist for Robustness
	6.3 Robustness Models and Analysis Techniques
	6.3.1 Non-state Based Modeling Techniques
	6.3.2 State-Based Modeling Techniques
	6.3.3 Sample Tool Support for Robustness Modeling


	7 Playbook for an Architecture Analysis of Robustness
	7.1 Step 1–Collect Artifacts
	7.2 Step 2–Identify the Mechanisms Used to Satisfy the Requirement
	7.3 Step 3–Locate the Mechanisms in the Architecture
	7.4 Step 4–Identify Derived Decisions and Special Cases
	7.5 Step 5–Assess Requirement Satisfaction
	7.6 Step 6–Assess Impact on Other Quality Attribute Requirements
	7.7 Step 7–Assess the Costs/Benefits of the Architecture Approach

	Sidebar: Assessing Brittleness
	8 Summary
	9 Further Reading
	Bibliography

