Carnegie Mellon University
Software Engineering Institute

Robustness

Rick Kazman

Phil Bianco
Sebastian Echeverria
James lvers

March 2022

TECHNICAL REPORT
CMU/SEI-2022-TR-004
DOI: 10.1184/R1/16455660

Software Solutions Division
[Distribution Statement A] Approved for public release and unlimited distribution

http://www.sei.cmu.edu

REV-03.18.2016.0

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA
01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

DM21-0920

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

Table of Contents

Abstract
1 Goals of This Document
2 On Robustness
3 Evaluating the Robustness of an Architecture
3.1 Measuring Robustness
3.2 Reasoning About Robustness Properties
3.3 Operationalizing the Measurement of Robustness
4 Robustness Scenarios
4.1 General Scenario for Robustness
4.2 Example Scenarios for Robustness
4.2.1 Scenario 1: System Initialization Times Out
4.2.2 Scenario 2: Software Fault and Recovery
4.2.3 Scenario 3: Resource Threshold Is Approached
4.2.4 Scenario 4: Hardware Failure and Restart
5 Mechanisms for Achieving Robustness
5.1 Tactics
5.1.1 Detect Faults
5.1.2 Recover from Faults
5.1.3 Prevent Faults
5.2 Patterns
5.2.1 Process Pairs
5.2.2 Triple Modular Redundancy
5.2.3 N+1 Redundancy
5.2.4 Circuit Breaker
5.2.5 Recovery Blocks
5.2.6 Forward Error Recovery
5.2.7 Health Monitoring
5.2.8 Throttling
6 Analyzing for Robustness
6.1 Tactics-Based Questionnaire
6.2 Architecture Analysis Checklist for Robustness
6.3 Robustness Models and Analysis Techniques
6.3.1 Non-state Based Modeling Techniques
6.3.2 State-Based Modeling Techniques
6.3.3 Sample Tool Support for Robustness Modeling
7 Playbook for an Architecture Analysis of Robustness

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

7.1 Step 1-Collect Artifacts

7.2 Step 2-Identify the Mechanisms Used to Satisfy the Requirement
7.3 Step 3—Locate the Mechanisms in the Architecture

7.4 Step 4-Identify Derived Decisions and Special Cases

7.5 Step 5—Assess Requirement Satisfaction

7.6 Step 6—-Assess Impact on Other Quality Attribute Requirements
7.7 Step 7-Assess the Costs/Benefits of the Architecture Approach

[Distribution Statement A] Approved for public release and unlimited distribution

© oo o,

11
12
14
14
15
15

16
16
19
21
24
26
26
27
27
28
28
29
30
30

31
31
36
38
42
47
58

60
60
61
63
64
66
67
69

8 Summary
9 Further Reading

Bibliography

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

71

72

73

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:

Figure 12:
Figure 13:

Figure 14:
Figure 15:

Figure 16:

Figure 17:

Figure 18:
Figure 19:
Figure 20:

The Form of a General Scenario

Robustness Tactics

Reliability Modeling Formalisms [Source: Trivedi 2017, Figure 2.6, p. 28]

A Spectrum of Modeling Methods [Derived from Boyd 1998]

A Simple Series RBD Diagram

A Group of Sensors (Employing an Active Redundancy Tactic) to Improve Robustness
Number of Parallel Components [Derived from Cepin 2011]

Equivalent Fault Tree of Simple Series RBD Diagram

Equivalent Fault Tree for a Group of Sensors (Employing a Redundance Tactic) to
Improve Robustness

Markov Model Representing the States That Correspond to System Capacity

Relative Frequencies Calculated for Each State in Our Markov Model from Our Initial
Design

CTMC State Transition Diagram and CTMC State Transition Matrix

Relative Frequencies Calculated for Each of the States in Our Markov Model from Our
Initial Design

CTMC State Transition Matrix for the Modified Design

Relative Frequencies Calculated for Each of the States in Our Markov Model from Our
New Design Reducing the Failure Rate

CTMC State Transition Matrix for the Second Modification of the Design That Improves
the Repair Rate

Relative Frequencies Calculated for Each of the States in Our Markov Model from Our
New Design Improving the Repair Rate

Two Components, Both Operational
One Component Operational and One Failed

Two Components, Both Failed

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

11
17
39
41
42
42
43
44

45
48

49
51

52
53

53

54

54
57
57
57

List of Tables

Table 1: Robustness Concerns, Questions, and Example Measures

Table 2: Robustness Tactics and Their Relationships to Architectural Approaches and Measures
of Interest

Table 3: Lifecycle Phases and Possible Analyses for Robustness

Table 4: Example Tactics-Based Robustness Questions

Table 5: Robustness Modeling and Analysis Tools

Table 6: Phases and Steps to Analyze an Architecture

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

18
31
32
58
60

Abstract

This report summarizes how to systematically analyze a software architecture with respect to a
quality attribute requirement for robustness. The report introduces the quality attribute of robust-
ness and common forms of robustness requirements for software architecture. It provides a set of
definitions, foundational concepts, and a framework for reasoning about robustness and the satis-
faction of robustness requirements by an architecture and by a system that realizes the architec-
ture. It describes a set of architectural mechanisms—patterns and tactics—that are commonly
used to satisfy robustness requirements. It also provides a set of steps that an analyst can use to
determine whether an architecture documentation package provides enough information to sup-
port analysis and, if so, to determine whether the architectural decisions made contain serious
risks relative to robustness requirements. An analyst can use these steps to determine whether
those requirements, represented as a set of scenarios, have been sufficiently well specified to sup-
port the needs of analysis. The reasoning around this quality attribute should allow an analyst,
armed with appropriate architectural documentation, to assess the robustness risks inherent in to-
day’s architectural decisions, in light of tomorrow’s anticipated needs.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

1 Goals of This Document

This document serves several purposes. It is

« an introduction to the quality attribute of robustness and common forms of robustness re-
quirements

o adescription of a set of mechanisms—patterns and tactics—that are commonly used to satisfy
robustness requirements

e ameans for an analyst to determine whether an architecture documentation package provides
enough information to support analysis and, if so, to determine whether the architectural deci-
sions made contain serious risks relative to robustness requirements

« ameans for an analyst to determine whether those robustness requirements, represented as a
set of scenarios, have been sufficiently well specified to support the needs of analysis

This document is one in a series of documents that, collectively, represent our best understanding
of how to systematically analyze an architecture with respect to a set of well-specified quality at-
tribute requirements [Kazman 2020a, 2020b]. The purpose of this document, as with all the docu-
ments in this series, is to provide a workable set of definitions, core concepts, and a framework
for reasoning about quality attribute requirements and their satisfaction (or not) by an architecture
and, eventually, a system. In this case, the quality attribute under scrutiny is robustness. The rea-
soning around this quality should allow an analyst, armed with appropriate architectural documen-
tation, to assess the risks inherent in today’s architectural decisions in light of tomorrow’s
anticipated tasks.

There are several commonly used and documented views of software and system architectures
[Clements 2010]. The Comprehensive Architecture Strategy, for example, proposes four levels of
architecture, each of which may be documented in terms of one or more views [Padilla 20197]:

1. functional architecture: The Functional Architecture provides a method to document the
functions or capabilities in a domain by what they do, the data they require or produce, and
the behavior of the data needed to perform the function.

2. hardware architecture: A Hardware Architecture specification describes the interconnection,
interaction and relationship of computing hardware components to support specific business
or technical objectives.

3. software architecture: A Software Architecture describes the relationship of software compo-
nents, and the way they interact to achieve specific business or technical objectives.

4. data architecture: A Data Architecture provides the language and tools necessary to create,
edit, and verify Data Models. A Data Model captures the semantic content of the information
exchanged.

The focus of this document is almost entirely on the software architecture because a software ar-
chitecture is the major carrier of and enabler of a system’s driving quality attributes. And since
software typically changes much more frequently than hardware, it is often the focus of mainte-
nance effort. There will, however, be implications of architectural decisions made on each of the
other views.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[Distribution Statement A] Approved for public release and unlimited distribution

In addition, other important decisions within a project will impact robustness—or any other qual-
ity attribute, for that matter. Even the best architecture will not ensure success if a project’s gov-
ernance is not well thought out and disciplined; if the developers are not properly trained; if
quality assurance is not well executed; and if policies, procedures, and methods are not followed.
Thus, we do not see architecture as a panacea but rather as a necessary precondition to success,
and one that depends on many other aspects of a project being well executed.

As we will show, there is not one single way to analyze for robustness. One can (and should) ana-
lyze for robustness at different points in the software development lifecycle, and at each stage in
the lifecycle this analysis will take different forms and produce results accompanied by varying
levels of confidence. For example, if there are documented architecture views but no implementa-
tion, the analysis will be less detailed and there will be less confidence in the results than if there
were an existing implementation that could be scrutinized, tested, and measured. We will return to
this issue of types of analysis and confidence in their outputs several times in this document.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[Distribution Statement A] Approved for public release and unlimited distribution

2 On Robustness

Robustness has traditionally been thought of as the ability of a software-intensive system to keep
working, consistent with its specifications, despite the presence of internal failures, faulty inputs,
or external stresses, over a long period of time. Robustness, along with other quality attributes
such as security and safety, is a key contributor to our trust that a system will perform today and
tomorrow in a reliable manner. In addition, the notion of robustness has more recently come to
encompass a system’s ability to withstand changes in its stimuli and environment without com-
promising its essential structure and characteristics. In this latter notion of robustness, systems
should be malleable, not brittle, with respect to changes in their stimuli or environments. As such
it is a highly important quality attribute to design into a system from the start, as it is unlikely that
any nontrivial system could achieve this quality without conscientious and deliberate engineering.
This is why we are interested in understanding robustness and how it is supported by appropriate
architectural decisions.

This report begins with a survey of definitions for robustness. We introduce a set of quality attrib-
ute scenarios, including a general scenario, to define robustness requirements more precisely.
This is followed by a discussion of the mechanisms that can be employed in a software architec-
ture to promote robustness. And we conclude with a discussion of the various ways that an analyst
can analyze for robustness, focusing on analysis checklists and analysis models and methods.

We create definitions for software and system quality attributes, like robustness, so that we can
label and categorize quality requirements. These labels are then used by several groups during the
development phase. Stakeholders and requirements engineers use the labels during requirements
elicitation to create checklists, to assess coverage and completeness, and to collect similar require-
ments. This group is often concerned with w#y the software must be robust.! A second group us-
ing the quality attribute labels is architects, who use the labels to identify the relevant parts of the
design body of knowledge to help them choose and instantiate mechanisms that promote the de-
sired quality and satisfy the requirement. Finally, analysts and evaluators use the labels to choose
methods to apply to validate and verify that the requirement is achieved. These latter groups are
usually less concerned with the why of the requirement and more concerned with the scope and
impact of what must be robust and constraints on how the robustness will be achieved. Also, these
groups need enough precision in the requirement definition that it is actionable and verifiable.?

How can we define robustness? As with many notions in software, we take inspiration and guid-
ance from more traditional areas of engineering. In civil engineering, for example, “robustness is
taken to imply tolerance to damage from extreme loads or accidental loads, although the frame-
work here is applicable to other adverse effects such as sensitivity to human error and deteriora-
tion” [Baker 2008].

! More formally, they are concerned that a requirement is necessary and appropriate [BKCASE 2018, Table 3].

2 More formally, they are concerned that the requirements are unambiguous, complete, and verifiable [BKCASE

2018, Table 3].

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[Distribution Statement A] Approved for public release and unlimited distribution

But robustness is certainly an important quality of software systems. Gerald Jay Sussman, in his
essay “Building Robust Systems: An Essay,” defines robust systems as “systems that have ac-
ceptable behavior over a larger class of situations than was anticipated by their designers” [Suss-
man 2007]. He goes on to say that “the most robust systems are evolvable: they can be easily
adapted to new situations with only minor modification.” Finally, and perhaps most troubling con-
sidering the subject of this report, he notes that “common practice of computer science actively
discourages the construction of robust systems.” This is because

[i]n software engineering we are taught that the “correctness” of software is para-
mount, and that correctness is to be achieved by establishing formal specification of
components and systems of components and by providing proofs that the specifications
of a combination of components are met by the specifications of the components and the
pattern by which they are combined. I assert that this discipline enhances the brittle-
ness of systems. In fact, to make truly robust systems we must discard such a tight disci-
pline. [Sussman 2007]

A literature survey reviewed approaches to software robustness [Shahrokni 2013], and this term
(and related terms such as “dependability” [Avizienis 2001]) also appears in quality attribute tax-
onomies such as that of the International Organization for Standardization (ISO) [ISO/IEC 2011].
However, the definitions used in these taxonomies are somewhat broad and the terminology var-
ies. While ISO 25010(E) does not define robustness, it does define reliability as the “degree to
which a system, product or component performs specified functions under specified conditions for
a specified period of time.” This concept is closely related to the following concepts:
e maturity: degree to which a system, product or component meets needs for relia-
bility under normal operation
e availability: degree to which a system, product or component is operational and
accessible when required for use
e fault tolerance: degree to which a system, product or component operates as in-
tended despite the presence of hardware or software faults

o recoverability: degree to which, in the event of an interruption or a failure, a
product or system can recover the data directly affected and re-establish the de-
sired state of the system [ISO/IEC 2011]

Similarly, the SWEBOK (Guide to the Software Engineering Body of Knowledge) [SWEBOK
2014] does not mention robustness at all, but it does mention several related terms such as relia-
bility and fault tolerance. Avizienis and colleagues define robustness as “dependability with re-
spect to erroneous input” [Avizienis 2001].

Synthesizing these definitions, we can make some statements about robustness as a quality attrib-
ute. A system is “robust” if it

1. has acceptable behavior in normal operating conditions over its lifetime

2. has acceptable behavior in stressful environmental conditions (e.g., spikes in load)
3. can recover from or adapt to states that are outside its proper operating specification
4

can evolve and adapt to changes in its environment and stimuli with only minor changes

The fourth point deserves some elaboration. Ideally a robust system can handle changes in its en-
vironment and stimuli that we cannot anticipate. If a system needs to be easily extended—such as

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[Distribution Statement A] Approved for public release and unlimited distribution

to accommodate new data sources, new data types, and new sensors—then it can be said to be ro-
bust with respect to those stimuli. If a system scales linearly with spikes in demand with little ef-
fect on latency or throughput, then it can be said to be robust with respect to those spikes. If a
system can accommodate changes in its environment—perhaps a platform upgrade—with rela-
tively little expenditure of time and effort, and with few new bugs generated, it can be said to be
robust with respect to that kind of maintenance stimulus. But each of these kinds of robustness in-
volves other quality attributes—extensibility, performance, and maintainability. Robustness,
viewed in this expansive way, potentially cuts across a// quality attributes and is really the sys-
tem’s ability to respond appropriately in the face of changing requirements and environments.
Thus, this notion of robustness is not localized to a single quality attribute. While these notions of
robustness are clearly important, they are not the focus of this report.

Finally, while the definitions of robustness provided above are helpful and provide context and
scope for a robustness requirement, they do not have any criteria for satisfaction. For example,
while the definitions suggest that it is important to measure robustness, they do not specify any
specific measures. How can we say that one architecture is more robust than another? How can
we say that an architecture is sufficiently robust? Further, the definitions do not distinguish among
robustness challenges. For any system, some operating conditions will be easy to deal with, while
others will be more difficult. Thus, these definitions allow us to talk about robustness in general,
but to specify requirements for robustness we need a more precise definition.

In the field of software quality attributes, we can use quality attribute scenarios to create opera-
tional definitions. The next section defines quality attribute scenarios for the quality attribute of
robustness.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[Distribution Statement A] Approved for public release and unlimited distribution

3 Evaluating the Robustness of an Architecture

While we can precisely evaluate the robustness of an existing implementation of an architecture—
by examining its bugs, faults, and failure history—we do not have this historical record when
evaluating new architectures. Thus, we must analyze and evaluate new architectures in terms of
their discernable characteristics. We use concrete scenarios to guide this analysis.>

We cannot precisely evaluate the robustness of an architecture any more than we can evaluate its
performance, availability, or integrability. All quality attribute names are categories, and catego-
ries are too imprecise to be used for evaluation. Thus, we are better served by speaking of and
measuring the robustness of an architecture, or a major subsystem, with respect to a set of antici-
pated and unanticipated faults or failures. And we specify these as scenarios. We will define a set
of robustness scenarios in Section 4 as examples of the kinds of faults or failures that a system
might be subjected to, and we will use these scenarios in our architecture analysis playbook (in
Section 7).

To understand what it means to measure the robustness of a system, we need to understand the
things that are involved in detection and recovery from faults and failures. To this end, we have
surveyed the techniques that the software engineering research literature has proposed for robust-
ness.

It is important to reiterate that while we restrict our attention in this section to analyzing architec-
tural information for robustness, historically robustness analyses have focused on richer sets of
information derived from a project’s logging, health monitoring, error handling, and history. The
advantage of these richer sets of information is that we can potentially create more precise anal-
yses. The disadvantage is that, to acquire such rich information, we need to build, deploy, and ac-
tually observe the system. At that point it can be very expensive and time consuming to mitigate
problems relating to robustness. Thus, our objective in analyzing an architecture for robustness is
to find a sweet spot wherein we can gain insight into the potential robustness characteristics of a
system before much, if any, code has been committed.

3.1 Measuring Robustness

When considering the robustness of a system, we must consider not only how resistant it is to fail-
ure but also the support that it provides to detect and recover from failures. Thus, we typically
consider several system-level measures of robustness such as

o mean time between failures (MTBF) — a prediction, based on historical data, of how much
time can be expected to elapse between system failures
« mean time to repair (MTTR)/estimated time of repair (ETR) — the time from a failure to
when the system is once again operating according to its service-level agreement

In this report we primarily focus on the aspects of robustness dealing with failures. For the aspects of robust-
ness dealing with future changes, see the sidebars on “Designing for Unknown Unknowns” and “Architecting for
the Unknown with Growth and Exploratory Scenarios” in Section 4, as well as the sidebar on “Assessing Brittle-
ness” in Section 7. In addition, this topic is addressed in our technical report Maintainability [Kazman 2020b].

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[Distribution Statement A] Approved for public release and unlimited distribution

o availability/uptime percentage (the “nines”) — a measure of the orders of magnitude of a sys-
tem’s predicted uptime

But these measures only give insight into the overall behavior of the system, from a robustness

perspective. We can refine such measures into a more detailed set of questions about a system’s

architecture. Consideration of such questions and their measures, and analysis of the architectural

decisions that led to those measures, can lead to improved architectures.

A set of architectural robustness concerns, the questions related to those concerns, and potential

measures that shed light on each of these questions are summarized in Table 1.

Table 1:

Robustness Concerns, Questions, and Example Measures

Concern

Supporting Questions

Example Measure

Prevention of
faults or fail-
ures

How many components have criti-
cal operational thresholds defined
and monitored?

Does the system provide predictive
modeling for thresholds (e.g., re-
source utilization)?

Does the software use mature
components that are known to be
reliable?

Does the system use hardware
components that are known to be
reliable?

Software MTBF
Hardware MTBF
Number of false positives for predictive analysis

Number or percentage of faults masked by detecting
when the system is close to failure threshold

Does the system quarantine unan-
ticipated requests or bad inputs?

% of confirmed unanticipated requests and invalid in-
puts quarantined

Does the system support retry?

Number of retries needed or allowed

Percentage of operations or requests that need re-
tries

% of retries successful

Detection of
faults, error
conditions, un-
safe operating
conditions

How many critical components can
be monitored?

% of system components that are monitored
% of components that support runtime diagnostics

How effective is the monitoring?

% of system faults or failures that are detected

Time to detect fault or failure or mean time to dis-
cover (MTTD)

Number of false positives

How complete is the fault modeling
(e.g., failure modes and effects
analysis [FMEA])?

Number of fault types identified

Number of fault types with detection mechanism and
recovery strategies defined

% of anticipated faults that have explicit error han-
dling

What confidence do you have in
detection, self-test, or voting?

% of tests that produce correct/incorrect results at
runtime

Recovery from
faults

How do you restart failed nodes?
Does the system support failover?

Does the system support rollback
to safe states?

MTTR

System uptime and downtime
Failover time

Failover success rate

Does the system support degraded
modes?

Time spent in degraded mode of operations
% of time spent in degraded modes

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

3.2 Reasoning About Robustness Properties

For a large, complex software-intensive system to be robust, its architecture will typically support

a mix of capabilities to detect and recover from failures, and it will typically contain redundant

(backup) resources that can be invoked in the case of a failure of a “live” resource. When evaluat-

ing an architecture with respect to robustness, we need to assess the design decisions in an archi-

tecture that lead to robustness. That is, we need to understand how well the architecture has been

designed with sufficient resources to withstand failures of individual system elements. And we
need to further understand how the architecture has been designed to monitor and manage these
resources.

Thus, we need to gauge the degree to which the architecture supports the following strategies:

« management of system resources, which we categorize into two main approaches:*

capacity sparing: providing more resources than what is strictly necessary to accomplish
the system’s functions, where some of these resources act as spares to replace failed re-
sources. There are three main approaches to achieve this:

» hardware redundancy — We would like to understand the degree to which portions of
the hardware architecture are protected by some sort of backup or redundant capa-
bility.

» software redundancy — Similarly such redundant capabilities may be spare pro-
cesses, threads, containers, virtual machines, and so forth that can be used in case of
a failure of the active component. We would like to understand the degree to which
and ease with which software components can be replaced.

» analytic redundancy — A special case of software or hardware redundancy worth
calling out is analytic redundancy [Bodson 1994, Sha 1998], where a complex com-
ponent is mirrored by a simpler one that provides reduced, but more robust, func-
tionality. For example, manual steering is analytically redundant to power steering
in automobiles. We seek to understand which system functions have analytic spares
to protect them in case of failure.

capacity management.: what functions to allocate to which resources
= growth potential: ease of adding capacity

= case of matching system resources to tasks (e.g., matching a task’s resources to a
suitable execution environment) and the ease with which a task can be moved
around (dynamically or statically)

« management of system state, which has two approaches [Binder 2000]:

state observability — We would like to understand the degree to which it is possible to
examine critical properties of the system’s state such as memory and storage usage, pro-
cessor utilization, liveness of processes and processors, communication channel utiliza-
tion, latency, and transaction volume. These properties need to be observed and
monitored because when such properties attain or exceed threshold or critical values,
this is an indicator of a potential or actual fault. Thus, we need to determine what state
properties are visible and what we can infer from these properties.

4

We conceive of approaches as generalizations of tactics, which we describe in Section 5.1.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[Distribution Statement A] Approved for public release and unlimited distribution

- state controllability — Coupled with state observability is state controllability. Given that
we are able to observe the state of the system, for the system to be truly robust we must
also be able to control that state, for example, by restarting bad processes, clearing
memory, switching from a primary processor to a backup processor, choosing a level of
service for a component, and choosing which components are active and which ones are
passive or standby. Thus, we need to determine what state properties are controllable and
what kinds of control we can we exert.

Different scenarios will of course emphasize these approaches to different degrees. For example,
detecting that memory is nearly full and instituting garbage collection involves state observability
(examining current memory usage) and state controllability (putting the process into the garbage
collection mode). Consider another scenario involving detecting a database failure and replacing it
with its hot spare (a “mirror”). This scenario relies on being able to observe that the primary data-
base has failed and on being able to control system state—directing all database connections to its
mirror (a redundant copy of the database).

Analyzing for robustness, then, is about examining the mix of mechanisms selected for a set of
robustness scenarios and predicting the percentage of faults and failures that can be observed (de-
tected), prevented, masked, and recovered from (potentially deploying spare capacity such as re-
dundant resources) to achieve system uptime requirements.

Note that many of the measures of robustness in Table 1 cannot be estimated from architectural
artifacts alone. Many of these measures can only be measured off of a built and deployed system.
However, this does not mean that we can do no useful analysis of an architecture with respect to
robustness. As we will show in our “Playbook” for architecture analysis in Section 7, even where
a measure does not exist or cannot be reliably obtained, an architecture can still be examined for
its fitness for purpose with respect to the questions and measures described in Table 1.

3.3 Operationalizing the Measurement of Robustness

Thus, when analyzing an architecture for robustness, we have some analysis tradeoffs to make.
We can analyze with respect to a particular set of scenarios and obtain a reasonably precise under-
standing of the architecture’s accommodation of those scenarios. But that understanding is neces-
sarily narrow—Iimited to just those scenarios that we have considered. Alternatively, we can
analyze with respect to metrics and get a broad understanding of the architecture’s overall level of
predicted robustness—as measured by the metrics—but this gives us no insight into the specific
risks involved in responding to specific scenarios. Furthermore, scenario-based analyses and de-
sign-level measures (like the degree of replication of critical resources) can be used to gain insight
into a design. This insight therefore can be achieved before committing to an implementation. But
precisely because these are measuring artifacts—like design specifications—that are created ear-
lier in a system’s lifetime, they may not accurately reflect the eventual state of the system. This
more accurate level of knowledge can only be achieved by measuring the system in operation.

For this reason, we recommend doing both: evaluating with respect to scenarios to get a deep un-
derstanding of some anticipated forms of robustness threats and, later in the lifecycle, adding
analyses using measures from a system model or from the system in operation to obtain a more
precise understanding of the qualities that the architecture (or any major subsystem within the ar-
chitecture) helps to realize.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[Distribution Statement A] Approved for public release and unlimited distribution

4 Robustness Scenarios

As stated in the book Software Architecture in Practice, quality attribute names themselves are of
little use, as they are vague and subject to interpretation. The antidote to this vagueness is to spec-
ify quality attribute requirements as scenarios [Bass 2012]. A quality attribute scenario is simply a
brief description of how a system is required to respond to some stimulus. Quality attribute sce-
narios, different from use cases, are architectural test cases. That is, they provide insights into the
qualities that the architecture supports and any risks associated with the fulfillment of these sce-
narios.

A quality attribute scenario provides an operational definition of a quality of a system. The use of
scenarios to specify quality attribute requirements for software dates back at least to 1994 [Kaz-
man 1994]. Published examples include scenarios to specify requirements for seven of the most
commonly occurring quality attributes [Bellomo 2015]: availability, interoperability, modifiabil-
ity, performance, security, usability, and testability [Bass 2012]. More recently we have seen
characterizations of the qualities of scalability and consistency [Klein 2015], integrability [Kaz-
man 2020a], and maintainability [Kazman 2020b].

A quality attribute scenario has six parts [Bass 2012]. The two most important parts are a stimulus
and a response. The stimulus is some event that arrives at the system, either during runtime exe-
cution (e.g., an invalid message arrives on a particular interface) or during development (e.g., a
development iteration completes). The response defines how the system should behave when the
stimulus occurs. For example, in response to an invalid message arriving, the system should log
the event and send an error response message. In response to a development iteration completing,
the unit and integration tests should be run and the test results reported.

The stimulus and response form the core of our operational definition by specifying the operation
that we will measure. The third part of a scenario, the response measure, defines how we will
measure the response and the satisfaction criteria. The response measure includes a metric and a
threshold.

The other three parts of the scenario provide more details. We specify the source of the stimulus,
to provide context for the scenario. We also specify the environment, which is the conditions un-
der which the stimulus occurs and the response is measured. Finally, we specify the artifact,
which is the portion of the system to which the requirement applies. Often, the artifact is the entire
system, but in the example above, we might treat invalid messages on external interfaces differ-
ently from invalid messages on internal interfaces.

During requirements elicitation, we may specify the parts of a scenario in any order. We often
begin with stimulus and response, although environment, source, or artifact may be the initial trig-
ger for the requirement. In any case, once the scenario is specified, we usually arrange the parts to
tell a story, as shown in Figure 1.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[Distribution Statement A] Approved for public release and unlimited distribution

o

Artifact(s)

Stimulus

e

Response
Environment Measure

o

Figure 1: The Form of a General Scenario

In this way, the quality of the architecture, including measures that reflect on its robustness, can
be continuously tracked and assessed. And if changes are made that undermine some architectural
characteristic, the test case fails and appropriate remedial action can be taken.

Sidebar: Scenarios as Architectural Test Cases

In architecture analysis, scenarios are “architectural test cases.” We use them to determine
whether the architecture—as envisioned or as created—is consistent with its specification.
Before the system is built, we use scenarios to assess the quality of the architectural deci-
sions. Once the system exists, we can continue to use scenarios to assess the quality of the
architecture as it evolves.

For runtime quality attributes, scenarios may become much more than simply guides for ana-
lysts. They can be used as acceptance tests and made part of the regression test suite. Or they
can even be manifested as system health measures that are logged or monitored continuously at
runtime. If the checks are at runtime, checking can be built into a system monitor; if the checks
are run at build time, checking can be built into a continuous integration pipeline. In either
case, checking requires appropriate visibility into system response measures (e.g., the ability to
track latency, resource usage, and mean time to failure [MTTF]). For non-runtime quality at-
tributes (assuming that source code is available), we can monitor the quality or degradation of
the architecture’s modular structure via architecture analysis tools, or we can monitor project
management measures of the effort required to make changes.

4.1 General Scenario for Robustness

As we noted in the previous section, operational definitions are not exclusive: There is not a sin-
gle scenario that specifies all the possible measurements that could characterize a quality like ro-
bustness. However, if we look at the definitions of robustness, we find some common themes. A
general scenario maps those common themes into the parts of a quality attribute scenario, provid-
ing a template that we can use to create concrete scenarios for a particular system. The general
scenario defines the #ype of the values for each part of the scenario, and a concrete scenario for
robustness of a system is created by specifying one or more system-specific values of the selected
type for each part of the scenario. (We say values—plural—because, for example, a scenario
might have more than one response measure.)

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[Distribution Statement A] Approved for public release and unlimited distribution

Here is the general scenario for robustness:’

Scenario Part Possible Type for Each Value
Source Software, external system, or hardware
Stimulus One of the following:

o Software fault or failure

e Hardware failure

¢ Unanticipated message

e Spike in demand

e [nvalid input

o Diagnostic test fails

¢ Unresponsive component

e Responds after deadline

e Defined threshold (e.g., processor utilization)

Artifact One of the following:

¢ Single software element

e Multiple software elements
e Hardware element

e Entire software system

Environment One of the following:
o Normal operations
e Degraded modes

Response One or more of the following:

¢ Fault detected and administrators notified
e System operates in degraded mode

o Fault detected, logged, and reported

e Fault repaired

o Fault prevented, logged, and reported

¢ Diagnostics completed

Response One or more of the following:
Measure e MTTD
¢ MTTR

e Percentage uptime

o Failover time

e Uptime

* % messages delivered

e % of responses received

4.2 Example Scenarios for Robustness

Each of the following example scenarios is constructed by selecting one or more of the types of
values from each of the six parts of the general scenario and specifying a system-specific value.
For each example, we will use an easy-to-understand “typical” system. In practice, you would
choose values that are as precise as possible, in the context of your system. In each example, notes

5 This general scenario is adapted from Bass and colleague’s general scenario for modifiability [Bass 2012, §7.1].

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[Distribution Statement A] Approved for public release and unlimited distribution

in square brackets are added to trace back to general scenario types in cases where the traceability
is not obvious.

Sidebar: Architecting for the Unknown with Growth and Exploratory Scenarios

As we will discuss in Section 5, a great challenge of building robust systems is architecting for
the unknown. Since we cannot enumerate all possible future changes or failure conditions, we
cannot create architectural responses to all unknowns. And even if we could, the time to com-
plete a project would grow enormously, and the cost/benefit ratio of architecting for less and
less likely failures and changes would shrink to vanishingly small. So what is the prudent archi-
tect or analyst to do?

We advocate employing growth and exploratory scenarios as a means of exploring the space of
conditions that we want to explicitly consider in our architecture design and analysis process.
Growth scenarios represent anticipated growth and anticipated stresses on a system. For exam-
ple, if we know based on our history that we are likely to add sensors to the system on a regular
basis, we can create a growth scenario that captures this anticipated future change in require-
ments.

Exploratory scenarios are ideally used to ask “what if” questions, to help probe our understand-
ing of more extreme potential changes and more extreme environmental conditions. What
would happen if all our processors failed simultaneously? How much work would be required
to change the architecture to manage tighter coordination among system instances? What
would happen if our backup network failed shortly after our main network failed? What would
happen if we needed to report updates every second instead of reporting them hourly? What
would happen under conditions of extreme heat, extreme load, or extreme growth in user re-
quests? These kinds of scenarios, while perhaps unlikely, help us understand the limits of our
architecture and the tradeoffs that have been made. They can also be used with respect to any
quality attribute, such as in evaluating the robustness of an architecture to future security or
maintainability requirements. As such they are a crucial tool in the toolbox of the designer and
the analyst.

Collectively, growth and exploratory scenarios allow architects or analysts to explore the ro-
bustness of an architecture with respect to future changes or failure conditions that fall outside
of current requirements but are perhaps more likely than not to become future requirements.
Growth and exploratory scenarios aren’t a panacea for the unknown though, as they still require
someone to think of potential changes or failure conditions prior to making architectural deci-
sions or evaluating an architecture.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[Distribution Statement A] Approved for public release and unlimited distribution

421 Scenario 1: System Initialization Times Out

This example scenario describes how failure can be detected and recovered from, for system ini-

tialization of a networked avionics system such as a navigation system.

Scenario Part

Value

Source Navigation System initialization configuration file errors
Stimulus Navigation System initialization times out.
Artifact Navigation System initialization component

Environment

Normal operations

Response The timeout is detected, and the system is initialized using a standard configura-
tion.

Response Timeout is detected 100% percent of the time.

Measure

System initialization is restarted within 10 ms.

Note that in this scenario—as in many scenarios—multiple response measures are specified. Fur-

thermore, in some cases, multiple scenarios are needed to completely specify the quality attribute

requirement. For instance, the environment in the example scenario above was normal operations,

and one of the responses was to reinitialize using a standard configuration. Another scenario, with

identical stimulus and response measures, might specify an environment of the system being re-

started in a degraded mode, and the response measure for restarting the system initialization could
be changed to 20 ms.

4.2.2 Scenario 2: Software Fault and Recovery

This example scenario describes the robustness of the Flight Management System to recover from
the failure of a software element.

Scenario Part Value

Source RADAR Altimeter Manager

Stimulus RADAR Altimeter Manager does not report sensor data by deadline.
Artifact Flight Management System

Environment

Normal operation

Response Restart RADAR Altimeter Manager.
Detect fault.
Log error.
Failover to backup.

Response Detect fault within 2 ms.

Measure

Restart within 10 ms.
Switch to backup in 5 ms.
Altimeter data is available 100% of operation.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

14

4.2.3 Scenario 3: Resource Threshold Is Approached

This example scenario describes how the system responds when a critical system resource is near

its capacity.

Scenario Part

Value

Source Processor Monitor
Stimulus Total CPU utilization is at 85%.
Artifact Flight Management System

Environment

Normal operation

Response Disable noncritical functions or message throttling.
Detect fault.
Log error.

Response Detect fault within 2 ms.

Measure

Restart within 10 ms.
All critical deadlines are met.

4.2.4 Scenario 4: Hardware Failure and Restart

This example scenario describes how the system responds when a critical system resource fails.

Scenario Part

Value

Source Processor Monitor
Stimulus CPU overheats and shuts down.
Artifact Flight Management System

Environment

Normal operation

Response Failover to other CPUs (hot spare).
Detect fault.
Log error.

Response Detect fault within 2 ms.

Measure

Restart within 10 ms.
All critical deadlines are met.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

15

5 Mechanisms for Achieving Robustness

We have thus far focused most of our attention on analyzing an architecture for robustness. But
analysis and design are two sides of the same coin. Now we turn our attention to the architectural
design task of achieving robustness.

An architect must choose a set of design concepts to construct a solution for any quality attribute
requirement [Cervantes 2016], and the architecture that the analyst is given to examine will con-
tain design decisions regarding such concepts. Here we generically refer to these design concepts
as “mechanisms.” We will discuss and provide examples of two important kinds of architectural
design mechanisms: tactics and patterns. These mechanisms are the architect’s main tools to
achieve a desired set of robustness characteristics.

5.1 Tactics

A mechanism is an architectural approach that we can take to control a quality attribute. Many
discussions of mechanisms—for example, Bass and colleagues [Bass 2012]—focus on technical
mechanisms, such as architectural patterns and tactics. Technical mechanisms are sufficient to sat-
isfy requirements for quality attributes such as availability or consistency in a big data system. For
other quality attributes such as security and robustness, technical mechanisms are necessary but
not sufficient to satisfy some system-level requirements, and the technical mechanisms must be
accompanied by governance mechanisms. For example, security defense-in-depth might begin
with physical security, which requires governance to enforce access procedures. For robustness,
any modification to the software will be extremely difficult without governance such as acquisi-
tion practices that ensure that appropriate architecture, design, and code documentation are pro-
duced, that code reviews are performed, that test suites are maintained, and that employees are
appropriately trained so that they do not undermine the integrity of the architecture with the
changes they implement.

Governance mechanisms related to robustness in the Department of Defense (DoD) context ap-
pear in discussions of the Modular Open System Approach (MOSA) [ODASD 2017] and DoD
software acquisition practices [DIB 2019]. The rest of this section focuses on technical mecha-
nisms for robustness: Architecture approaches are commonly employed to satisfy the types of sce-
narios that we outlined in the previous section.

In practice, the terminology used for technical mechanisms is informal, and often the term is used
to refer to any decision made during the architecture design process or to any fragment of the ar-
chitecture that is intended to address some particular functional or quality attribute-related con-
cern. In this report, we will consider two specific types of mechanisms:

e Architectural Patterns. Design patterns are conceptual solutions to recurring design problems
that exist in a defined context. A pattern is architectural when its use directly and substan-
tially influences the satisfaction of an architecture driver such as a quality attribute scenario
[Cervantes 2016]. An architectural pattern defines a set of element types and interactions; the
topological layout of the elements; and constraints on topology, element behavior, and inter-
actions [Bass 2012].

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[Distribution Statement A] Approved for public release and unlimited distribution

e Architectural Tactics. Tactics are smaller building blocks of design than architectural pat-

terns, focused on a single element or interaction, in contrast to a pattern that defines a collec-

tion of elements [Bass 2012].

Since tactics are simpler and more fundamental than patterns, we begin our discussion of mecha-
nisms for robustness with them. Tactics are the building blocks of design, the raw materials from
which patterns, frameworks, and styles are constructed. Each set of tactics is grouped according to

the quality attribute goal that it addresses. The goals for the robustness tactics shown in Figure 2
are to enable a system, in the face of a fault, to prevent, mask, or repair the fault so that a service
being delivered by the system remains compliant with its specification. The tactic descriptions
presented below are derived, in part, from the third edition of Software Architecture in Practice
[Bass 2012]. We discuss each of the tactics presented in Figure 2 in more detail below. For each
tactic that we discuss, we not only describe the tactic but also relate it to the measures described in

Section 3.1 as a way of describing the intent and impact of the tactic.

Robustness Tactics

Detect faults Recover from faults

Preparation and repair Reintroduction

Monit Shad

. » Monitor * Redundant spare . adow

Fault arrives | Ping/echo « Rollback « State resynchronization
+ Heartbeat + Exception handling « Escalating restart
» Timestamp « Software upgrade « Non-stop forwarding
+ Condition monitoring * Retry

« Sanity checking « Ignore faulty behavior

}

Prevent faults

|

+ Removal from service
« Transactions
 Predictive model

« Exception prevention
« Increase competence

set

—
Fault masked,

fault prevented,
or repair made

» Voting » Graceful degradation
» Exception detection * Reconfiguration
+ Self-test

Figure 2: Robustness Tactics

These tactics are known to influence the responses (and hence the costs) in the general scenario
for robustness (e.g., number of components affected, effort, calendar time, new defects intro-
duced). Table 2 summarizes the tactics presented in this section, and how each relates to the char-
acteristics and measures presented in Sections 3.1 and Figure 2. The table assesses the
relationships between the availability (robustness) tactics and the architectural approaches of ca-
pacity sparing, capacity management, state observability, and state controllability, each of which
can contribute to achieving higher measures of MTTF and MTTR. An architect, in designing for
high availability, needs to make decisions to

e provision spare capacity (including, in most cases, providing for backup resources)
o manage the capacity of the resources that are available

o observe the state of the system to determine when the system, or some part of it, is incon-
sistent with respect to its specification

« control the state of the system to keep the system alive and healthy, consistent with its specifi-
cation

By consciously managing these system strategies and concerns, the architect can design to reduce

the likelihood of a failure, thus increasing the MTTF measure, or to recover from failures more

quickly, thus reducing the MTTR measure.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[Distribution Statement A] Approved for public release and unlimited distribution

Table 2: Robustness Tactics and Their Relationships to Architectural Approaches and Measures of

Interest
Tactic Architectural Approaches Measures
Capacity Capacity State State MTTF MTTR
Sparing Mgmt. Observ. Control.

Monitor + +
Ping/Echo + +
Heartbeat + +
Timestamp + +
Condition Monitoring + +
Sanity Checking + +
Voting + +
Exception Detection + +
Self-test + +
Active Redundancy + + +
Passive Redundancy + + +
Spare + +
Rollback + +
Exception Handling + +
Software Upgrade + +
Retry + + +
Ignore Faulty Behavior + * +
Graceful Degradation + + * *
Reconfiguration + + + * "
Shadow + +
State Resynchronization + +
Escalating Restart + +
Non-stop Forwarding + + * *
Removal from Service + + +
Transactions + + +
Predictive Model + +

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

Tactic Architectural Approaches Measures
Capacity Capacity State State MTTF MTTR
Sparing Mgmt. Observ. Control.

Exception Prevention + +

Increase Competence Set + +

Note: A plus sign indicates that the tactic positively addresses maintainability properties and hence measures, and
an asterisk indicates that the tactic might positively or negatively address the measure, depending on its realization.
A blank cell means that the property has no consistent effect on the measure.

Sidebar: Designing for Unknown Unknowns

Many of the robustness tactics are employed because we acknowledge that faults in parts of the
system are a normal occurrence; hence we can architect to detect and recover from those faults,
increasing the likelihood that faults do not become failures. But these tactics are primarily
aimed at recovering from known, anticipated faults. Several of the robustness tactics presented
below are, however, particularly helpful in considering how to deal with problems that we can-
not anticipate—the so-called unknown unknowns. These tactics include rollback, ignore faulty
behavior, abort, analytic redundancy, masking, and return to safe state.

Every architect must consider and balance cost, schedule, and risk when making design deci-
sions. As such it is impossible to deal with a/l unknown unknowns. There is always an enve-
lope of faults and error states that a prudent architect chooses to handle. The unknown
unknowns are then the complement to these identified faults and states. One of the motivations
for enumerating tactics is to help architects reflect on and, ideally, broaden that “known” enve-
lope.

As an analyst, when you see a tactic such as exception handling being employed, you should
ask which exceptional states that tactic handles and additionally ask what happens to excep-
tional states not captured. Models, such as fault tree analysis, can help analysts understand the
scope of the tactics that architects are considering.

511 Detect Faults

Before any system can take action regarding a fault, the presence of the fault must be detected or
anticipated. Tactics in this category include the following:

e Monitor. A monitor is a component that is used to monitor the state of health of various other
parts of the system: processors, processes, input/output, memory, and so forth. A system
monitor can detect failure or congestion in the network or other shared resources, such as
from a denial-of-service attack. It orchestrates software using other tactics in this category to
detect malfunctioning components. For example, the system monitor can initiate self-tests or
be the component that detects faulty timestamps or missed heartbeats.®

6 When the detection mechanism is implemented using a counter or timer that is periodically reset, this speciali-
zation of system monitor is referred to as a watchdog. During nominal operation, the process being monitored
will periodically reset the watchdog counter/timer as part of its signal that it's working correctly; this is some-
times referred to as “petting the watchdog.”

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[Distribution Statement A] Approved for public release and unlimited distribution

e Ping/echo. Ping/echo refers to an asynchronous request/response message pair exchanged be-
tween nodes, used to determine reachability and the round-trip delay through the associated
network path. But the echo also determines that the pinged component is alive and responding
correctly. The ping is often sent by a system monitor. Ping/echo requires a time threshold to
be set; this threshold tells the pinging component how long to wait for the echo before consid-
ering the pinged to have failed (“timed out”). Standard implementations of ping/echo are
available for nodes interconnected via the Internet Protocol (IP).

e Heartbeat. A heartbeat is a fault detection mechanism that employs a periodic message ex-
change between a system monitor and a process being monitored. A special case of heartbeat
is when the process being monitored periodically resets the watchdog timer in its monitor to
prevent it from expiring and thus signaling a fault. For systems where scalability is a concern,
transport and processing overhead can be reduced by piggybacking heartbeat messages on to
other control messages being exchanged between the process being monitored and the distrib-
uted system controller. The big difference between heartbeat and ping/echo is what holds the
responsibility for initiating the health check—the monitor or the component itself.

o Timestamp. This tactic is used to detect incorrect sequences of events, primarily in distributed
message-passing systems. A timestamp of an event can be established by assigning the state
of a local clock to the event immediately after the event occurs. Simple sequence numbers can
also be used for this purpose, if time information is not important.

o Condition monitoring. This tactic involves checking conditions in a process or device or vali-
dating assumptions made during the design. By monitoring conditions, this tactic prevents a
system from producing faulty behavior. The computation of checksums is a common example
of this tactic. However, the monitor must itself be simple (and, ideally, provable) to ensure
that it does not introduce new software errors.

o Sanity checking. This tactic checks the validity or reasonableness of specific operations or
outputs of a computation. This tactic is typically based on a knowledge of the internal design,
the state of the system, or the nature of the information under scrutiny. It is most often em-
ployed at interfaces to examine a specific information flow.

e Voting. The most common realization of this tactic is referred to as Triple Modular Redun-
dancy (or TMR, as we will discuss in Section 5.2.2), which employs three components that do
the same thing, each of which receives identical inputs and forwards its output to voting logic,
used to detect any inconsistency among the three output states. Faced with an inconsistency,
the voter reports a fault. It must also decide what output to use. It can let the majority rule or
choose some computed average of the disparate outputs. This tactic depends critically on the
voting logic, which is usually realized as a simple, rigorously reviewed, and tested singleton
so that the probability of error is low.

- Replication is the simplest form of voting; here, the components are exact clones of each
other. Having multiple copies of identical components can be effective in protecting
against random failures of hardware, but this approach cannot protect against design or
implementation errors, in hardware or software, since there is no form of diversity em-
bedded in this tactic.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[Distribution Statement A] Approved for public release and unlimited distribution

Functional redundancy is a form of voting intended to address the issue of common-
mode failures (design or implementation faults) in hardware or software components.
Here, the components must always give the same output given the same input, but they
are diversely designed and diversely implemented.

Analytic redundancy permits not only diversity among components’ private sides but
also diversity among the components’ inputs and outputs. This tactic is intended to toler-
ate specification errors by using separate requirement specifications. In embedded sys-
tems, analytic redundancy also helps when some input sources are likely to be
unavailable at times. For example, avionics programs have multiple ways to compute
aircraft altitude, such as using barometric pressure, the radar altimeter, and the geometric
straight-line distance and look-down angle of a point ahead on the ground. The voter
mechanism used with analytic redundancy needs to be more sophisticated than just let-
ting majority rule or computing a simple average. It may have to understand which sen-
sors are currently reliable or not, and it may be asked to produce a higher fidelity value
than any individual element can, by blending and smoothing individual values over time.

e Exception detection. This tactic is used for detecting a system condition that alters the normal

flow of execution. The exception detection tactic can be further refined:

System exceptions will vary according to the processor hardware architecture employed
and include faults such as divide by zero, bus and address faults, illegal program instruc-
tions, and so forth.

The parameter fence tactic incorporates an a priori data pattern (such as 0OXDEADBEEF)
placed immediately after any variable-length parameters of an object. This allows for
runtime detection of overwriting the memory allocated for the object’s variable-length
parameters.

Parameter typing employs a base class that defines functions that add, find, and iterate
over message parameters in Type-Length-Value (TLV) format. Derived classes use the
base class functions to implement functions that provide parameter typing according to
each parameter’s structure. Use of strong typing to build and parse messages results in
higher availability than implementations that simply treat messages as byte buckets. Of
course, all design involves tradeoffs. When you employ strong typing, you typically
trade higher availability against ease of evolution.

Timeout is a tactic that raises an exception when an element detects that it or another ele-
ment has failed to meet its timing constraints. For example, an element awaiting a re-
sponse from another element can raise an exception if the wait time exceeds a certain
value.

e Self-test. Elements (often entire subsystems) can run procedures to test themselves for correct

operation. Self-test procedures can be initiated by the element itself or invoked from time to

time by a system monitor. These may involve employing some of the techniques found in

condition monitoring such as checksums.

5.1.2

Recover from Faults

Recover from faults tactics are refined into preparation and repair tactics and reintroduction tac-
tics. The latter are concerned with reintroducing a failed (but rehabilitated) element back into nor-
mal operation.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[Distribution Statement A] Approved for public release and unlimited distribution

Preparation and repair tactics are based on a variety of combinations of retrying a computation or
introducing redundancy. They include the following:

e Redundant spare. This tactic has three major manifestations:

— Active redundancy (hot spare). In this configuration, all the nodes (active or redundant
spare) in a protection group’ receive and process identical inputs in parallel, allowing the
redundant spare(s) to maintain synchronous state with the active node(s). Because the
redundant spare possesses an identical state to the active processor, it can take over from
a failed element in a matter of milliseconds. The simple case of one active node and one
redundant spare node is commonly referred to as 1+1 (“one plus one”) redundancy. Ac-
tive redundancy can also be used for facilities protection, where active and standby net-
work links are used to ensure highly available network connectivity.

- Passive redundancy (warm spare). In this configuration, only the active members of the
protection group process input traffic; one of their duties is to provide the redundant
spare(s) with periodic state updates. Because the state maintained by the redundant
spares is only loosely coupled with that of the active node(s) in the protection group
(with the looseness of the coupling being a function of the checkpointing mechanism
employed between active and redundant nodes), the redundant nodes are referred to as
warm spares. Depending on a system’s availability requirements, passive redundancy
provides a solution that achieves a balance between the more highly available but more
compute-intensive (and expensive) active redundancy tactic and the less available but
significantly less complex cold spare tactic (which is also significantly cheaper).

— Spare (cold spare). Cold sparing refers to a configuration where the redundant spares of
a protection group remain out of service until a failover occurs, at which point a power-
on-reset procedure is initiated on the redundant spare before it is placed in service. Due
to its poor recovery performance, cold sparing is better suited for systems having only
high-reliability (MTBF) requirements as opposed to those also having high-availability
requirements.

e Rollback. This tactic permits the system to revert to a previous known good state, referred to
as the “rollback line”—rolling back time—upon the detection of a failure. Once the good
state is reached, then execution can continue. This tactic is often combined with active or pas-
sive redundancy tactics so that after a rollback has occurred a standby version of the failed
element is promoted to active status. Rollback depends on a copy of a previous good state (a
checkpoint) being available to the elements that are rolling back. Checkpoints can be stored in
a fixed location and updated at regular intervals or at convenient or significant times in the
processing, such as at the completion of a complex operation.

e Exception handling. Once an exception has been detected, the system must handle it in some
fashion. The easiest thing it can do is simply to crash, but of course that’s a terrible idea from
the point of availability, usability, testability, and plain good sense. There are much more pro-
ductive possibilities. The mechanism employed for exception handling depends largely on the
programming environment employed, ranging from simple function return codes (error
codes) to the use of exception classes that contain information helpful in fault correlation,

7 A protection group is a group of processing nodes where one or more nodes are “active” and the remaining
nodes in the protection group serve as redundant spares.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[Distribution Statement A] Approved for public release and unlimited distribution

such as the name of the exception thrown, the origin of the exception, and the cause of the ex-
ception. Software can then use this information to mask the fault, usually by correcting the
cause of the exception and retrying the operation.

Software upgrade. The goal of this tactic is to achieve in-service upgrades to executable code
images without affecting services. These are commonly used in routers, telecommunications
switches, and similar contexts where reboots and downtime are not practical. The actual up-
grade may be realized as a function patch, class patch, or hitless in-service software upgrade
(ISSU). A function patch is used in procedural programming and employs an incremental
linker/loader to store an updated software function into a pre-allocated segment of target
memory. The new version of the software function will employ the entry and exit points of
the deprecated function. Also, upon loading the new software function, the symbol table must
be updated and the instruction cache invalidated. The class patch realization of this tactic is
applicable for targets executing object-oriented code, where the class definitions include a
backdoor mechanism that enables the runtime addition of member data and functions. Hitless
ISSU leverages the active redundancy or passive redundancy tactics to achieve non-service-
affecting upgrades to software and associated schema. In practice, the function patch and
class patch are used to deliver bug fixes while the hitless ISSU is used to deliver new features
and capabilities.

Retry. The retry tactic assumes that the fault that caused a failure is transient and retrying the
operation may lead to success. This tactic is used in networks and server farms where failures
are expected and common. There should be a limit on the number of retries that are attempted
before a permanent failure is declared.

Ignore faulty behavior. This tactic calls for ignoring messages sent from a particular source
when the system determines that those messages are spurious. For example, we could instruct
it to ignore messages from an external element launching a denial-of-service attack, such as
by establishing filters for an access-control list.

Graceful degradation. This tactic maintains the most critical system functions in the presence
of element failures, dropping less critical functions. This is done to ensure that failures of in-
dividual system elements gracefully reduce system functionality but do not cause a complete
system failure.

Reconfiguration. Using this tactic, a system attempts to recover from failures of a system ele-
ment by reassigning responsibilities to the resources left functioning, while maintaining as
much of the critical functionality as possible.

Reintroduction is where a failed element is reintroduced after a repair has been effected. Reintro-

duction tactics include the following:

Shadow. This tactic refers to operating a previously failed or in-service upgraded element in a
“shadow mode” for a predefined duration of time prior to reverting the element back to an ac-
tive role. During this duration its behavior can be monitored for correctness, and it can repop-
ulate its state incrementally.

State resynchronization. This tactic is a reintroduction partner to the active redundancy and
passive redundancy preparation and repair tactics. When used alongside the active redun-
dancy tactic, the state resynchronization occurs organically, since the active and standby ele-
ments each receive and process identical inputs in parallel. In practice, the states of the active
and standby elements are periodically compared to ensure synchronization. This comparison

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[Distribution Statement A] Approved for public release and unlimited distribution

may be based on a cyclic redundancy check calculation (checksum) or, for systems providing
safety-critical services, a message digest calculation (a one-way hash function). When used
alongside the passive redundancy (warm spare) tactic, state resynchronization is based solely
on periodic state information transmitted from the active element(s) to the standby element(s),
typically via checkpointing. A special case of this tactic is found in stateless services,
whereby any resource can handle a request from another (failed) resource.

Escalating restart. This reintroduction tactic allows the system to recover from faults by vary-
ing the granularity of the element(s) restarted and minimizing the level of service affectation.
For example, consider a system that supports four levels of restart, as follows. The lowest
level of restart (call it Level 0), and hence least impacting on services, employs passive re-
dundancy (warm spare), where all child threads of the faulty element are killed and recreated.
In this way, only data associated with the child threads is freed and reinitialized. The next
level of restart (Level 1) frees and reinitializes all unprotected memory, while protected
memory remains untouched. The next level of restart (Level 2) frees and reinitializes all
memory, both protected and unprotected, forcing all applications to reload and reinitialize.
And the final level of restart (Level 3) would involve completely reloading and reinitializing
the executable image and associated data segments. Support for the escalating restart tactic is
particularly useful for the concept of graceful degradation, where a system is able to degrade
the services it provides while maintaining support for mission-critical or safety-critical appli-
cations.

Non-stop forwarding. The concept of non-stop forwarding originated in router design. In this
design, functionality is split into two parts: supervisory, or control plane (which manages con-
nectivity and routing information), and data plane (which does the actual work of routing
packets from sender to receiver). If a router experiences the failure of an active supervisor, it
can continue forwarding packets along known routes—with neighboring routers—while the
routing protocol information is recovered and validated. When the control plane is restarted, it
implements what is sometimes called “graceful restart,” incrementally rebuilding its routing
protocol database even as the data plan continues to operate.

51.3 Prevent Faults

Instead of detecting faults and then trying to recover from them, what if your system could pre-
vent them from occurring in the first place? Although this sounds like some measure of clairvoy-
ance might be required, it turns out that in many cases it is possible to do just that.®

Removal from service. This tactic refers to temporarily placing a system element in an out-of-
service state for the purpose of mitigating potential system failures. One example involves
taking an element of a system out of service and resetting the element in order to scrub latent
faults (such as memory leaks, fragmentation, or soft errors in an unprotected cache) before the
accumulation of faults becomes service affecting (resulting in system failure). Another term
for this is software rejuvenation.

These tactics deal with runtime means to prevent faults from occurring. Of course, an excellent way to prevent
faults—at least in the system you're building, if not in systems that your system must interact with—is to pro-
duce high-quality code. This can be done by means of code inspections, pair programming, solid requirements
reviews, and a host of other good engineering practices.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[Distribution Statement A] Approved for public release and unlimited distribution

o Substitution. This tactic employs safer protection mechanisms—often hardware-based—for
software design features that are considered critical. For example, hardware protection de-
vices such as watchdogs, monitors, and interlocks are often used in lieu of software versions,
as these are typically more reliable. Note that substitution is typically only feasible and bene-
ficial when the function being replaced is relatively simple.

o Transactions. Systems targeting high-availability services leverage transactional semantics to
ensure that asynchronous messages exchanged between distributed elements are atomic, con-
sistent, isolated, and durable. These four properties are referred to as the “ACID properties.”
The most common realization of the fransactions tactic is “two-phase commit” protocol. This
tactic prevents race conditions caused by two processes attempting to update the same data
item.

e Predictive model. A predictive model, when combined with a monitor, is employed to moni-
tor the state of health of a system process to ensure that the system is operating within its
nominal operating parameters and to take corrective action when conditions are detected that
are predictive of likely future faults. The operational performance metrics monitored are used
to predict the onset of faults; examples include session establishment rate (in an HTTP
server), threshold crossing (monitoring high- and low-water marks for some constrained,
shared resource), maintaining statistics for process state (in-service, out-of-service, under
maintenance, idle), and message queue length statistics.

o Exception prevention. This tactic refers to techniques employed for the purpose of preventing
system exceptions from occurring. The use of exception classes, which allows a system to
transparently recover from system exceptions, was discussed above. Other examples of ex-
ception prevention include abstract data types such as smart pointers and the use of wrappers
to prevent faults such as dangling pointers and semaphore access violations from occurring.
Smart pointers prevent exceptions by doing bounds checking on pointers and by ensuring that
resources are automatically deallocated when no data refers to them. In this way resource
leaks are avoided.

e Increase competence set. A program’s competence set is the set of states in which it is
“competent” to operate. For example, the state when the denominator is zero is outside the
competence set of most divide programs. When an element raises an exception, it is signaling
that it has discovered itself to be outside its competence set; in essence, it doesn’t know what
to do and quits in defeat. Increasing an element’s competence set means designing it to handle
more cases—faults—as part of its normal operation. For example, an element that assumes it
has access to a shared resource might throw an exception if it discovers that access is blocked.
Another element might simply wait for access or return immediately with an indication that it
will complete its operation on its own the next time it does have access. In this example, the
second element has a larger competence set than the first.

e Abort. If an operation is determined to be unsafe, it is aborted before it can cause damage.
This tactic is a common strategy employed to ensure that a system fails safely.

o Masking. A system may mask a fault by comparing the results of several redundant upstream
components and employing a voting procedure in case one or more of the values output by
these upstream components differ. In such a case the majority wins, and any erroneous values
are never seen by downstream components. For this tactic to work, the voter must be simple
and highly reliable (perhaps employing the substitution tactic).

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[Distribution Statement A] Approved for public release and unlimited distribution

5.2 Patterns

As stated above, architectural tactics are the fundamental building blocks of design. Hence, they
are the building blocks of architectural patterns. By way of analogy, we say that tactics are atoms
and patterns are molecules. During analysis it is often useful for analysts to break down complex
patterns into their component tactics so that they can better understand the specific set of quality
attribute concerns that patterns address, and how. This approach simplifies and regularizes analy-
sis, and it also provides more confidence in the completeness of the analysis.

Next, we provide a brief description of a set of patterns, a discussion of how the patterns promote
robustness, and the other quality attributes that are negatively impacted by these patterns
(tradeoffs). Note that just because a pattern negatively impacts some other quality attribute, this
does not mean that the levels of that quality attribute will be unacceptable. For example, the use of
the transactions tactic always negatively affects performance (specifically latency) as transactions
add some overhead. This is inevitable; the inclusion of the transaction protocol adds processing
and communication steps. This is not to say, however, that the resulting latency of the system will
be unacceptable. Perhaps the added latency is only a small fraction of end-to-end latency on the
most important use cases. In such cases the tradeoff is a good one, providing benefits for robust-
ness while “costing” only a small amount of latency.

It is also important to note that the tradeoffs described below are general. Other architectural
mechanisms or decisions applied with the pattern may change the impacts. For example, if one
chose the active redundancy (hot spare) tactic, one could employ Mesos, in “high availability”
mode, employing Apache Zookeeper. Zookeeper provides an infrastructure for synchronization of
nodes in a “quorum,” where the nodes act as hot spares for each other, typically with one being
the “master” and the remainder of the nodes being “backups.” Updates get sent to the master,
which automatically informs the backups. The use of such a tool might greatly ease the imple-
mentation burden of this tactic. These are the kinds of assessments that analysts need to make
when assessing the appropriateness of the tactics and patterns selected and implemented.

This pattern list is not meant to be exhaustive. The purpose of this section is to illustrate the most
common robustness patterns—Process Pairs, Triple Modular Redundancy, N+1 Redundancy, Cir-
cuit Breaker, Recovery Blocks, Forward Error Recovery, Health Monitoring, and Throttling—and
to show how analysts can break patterns down into tactics that allow them to understand the pat-
terns’ quality attribute characteristics, strengths, weaknesses, and tradeoffs.

5.21 Process Pairs

The Process Pairs pattern combines software (and sometimes hardware) redundancy tactics with
transactions and checkpointing. Two identical processes are running, with one process being des-
ignated the “primary” or “leader.” This primary process is the one that clients interact with at
runtime, under normal circumstances. As the primary process processes information, it bundles its
execution into transactions. These transactions typically result in a change to data in the primary
process. When a transaction has successfully completed, a “checkpoint” is sent to the backup pro-
cess so that the backup can align the state of its data with that of the primary. In this way, if the
primary process fails, the backup always has a consistent state that is as complete as the state of
the failed primary (except for any transaction that failed in mid-execution on the primary).

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[Distribution Statement A] Approved for public release and unlimited distribution

Benefits for robustness:

o The benefit of Process Pairs, over simply using a transaction mechanism, is that upon failure
of the primary process the recovery is very fast (as compared with restarting the primary pro-
cess and playing back the transaction log to recreate the state just prior to the failure).

Tradeoffs:

o The Process Pairs pattern requires the expenditure of additional software, networking, and po-
tentially hardware resources.

o Adding the checkpointing and failover mechanisms increases up-front complexity.
5.2.2 Triple Modular Redundancy

The Triple Modular Redundancy (TMR) pattern is one of the earliest known robustness patterns.
Its roots can be traced back to at least 1951 in computer hardware, where TMR was used in mag-
netic drum memory to ameliorate the inherent unreliability of individual elements. It builds upon
the active redundancy tactic, where two or more elements process the same inputs in parallel.
Many variants of this pattern exist, such as quad-modular redundancy (QMR) and N-modular re-
dundancy. In each case one node may be elected as “active” with the other nodes processing all
inputs in parallel, but only being activated in case the active node fails. In other versions there is a
voting process where the voter collects and compares the “votes” from each of the replicated
nodes; if a node disagrees with the majority, it is marked as failed and its outputs are ignored.

Benefits for robustness:
o The most obvious benefit of TMR is the avoidance of a single point of failure.

o Ifavoter is used, then this pattern also includes a fault detection mechanism.

Tradeoffs:

o Redundancy greatly increases the hardware costs for the system, its complexity, and its initial
development time. Also, systems using this pattern consume substantially more resources at
runtime (e.g., energy and network bandwidth). Finally, there is the added complexity of deter-
mining which of the nodes to anoint as the “active” node and, in case of failure, which backup
to promote to active status.

o Some systems do not use exact replicas, but rather use N-version programming [Avizienis
1985] to produce functionally equivalent nodes. N-version programming can result in a more
robust system, since the different versions are less likely to suffer from a common mode fail-
ure than pure replicas, but it greatly increases the cost and complexity of the system’s soft-
ware.

5.2.3 N+1 Redundancy

The N+1 Redundancy pattern builds upon one or more redundancy tactics. In this pattern there are
N active nodes, with one spare node. The assumptions are that the active nodes have similar func-
tionality and the spare node can be introduced to replace any of the N active nodes if one of them
has failed. The one spare node may be an active spare, meaning that it processes all the same in-
puts as the system(s) that it is mirroring; it may be a passive spare, meaning that the active nodes
periodically send it updates; or it may be a cold spare, meaning that when it takes the place of a
failed node it initially has none of that node’s state.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[Distribution Statement A] Approved for public release and unlimited distribution

Benefits for robustness:

e Clearly N+1 Redundancy provides the benefit of any redundancy pattern, which is the avoid-
ance of a single point of failure.

o Just as clearly, N+1 Redundancy is much less expensive than TMR, QMR, or similar patterns
that require a heavy investment in software and hardware, since a single backup node can
back up any chosen number of active nodes.

Tradeoffs:
o The higher the N, the greater the likelihood that more than one failure could occur.

o The lower the N, the more an implementation of this pattern costs, in terms of redundant
hardware and the attendant energy costs.

5.2.4 Circuit Breaker

The Circuit Breaker pattern is used to detect failures and prevent the failure from constantly reoc-
curring or cascading to other parts of a system. It is commonly used in cases where failures are
intermittent. A Circuit Breaker is a combination of a timeout (an exception detection tactic) and a
monitor, which is an intermediary between services [Kazman 2020b]. With a Circuit Breaker [Ny-
gard 2017], a service is wrapped and the wrapper monitors the state of the service. If it is deter-
mined that the service is not operating consistently with its specification, the breaker is tripped,
and all subsequent calls to the service return an error immediately. This ensures that such depend-
encies do not slow down other parts of the system due to, for example, repeated timeouts, which
increases the controllability of the deployment.

Benefits for robustness:

o The use of this pattern limits the consequences of a failure by wrapping the interface to that
element and returning immediately if a failure has been detected. This can greatly reduce the
amount of resources wasted on retrying a service that is known to have failed.

Tradeoffs:

o The use of a Circuit Breaker will negatively affect performance. Like many robustness pat-
terns, this tradeoff is often considered to be justifiable, particularly if services experience in-
termittent and transient failures.

5.2.5 Recovery Blocks

The Recovery Blocks pattern is used when there are several possible ways to process a result
based on an input and one is chosen as the primary processing capability. After the primary pro-
cessing capability returns a result, it is passed through an acceptance test. If this test fails, this pat-
tern then tries passing the input to a second processing capability. This second processing
capability acts as a “recovery block” for the primary. This process can continue for any number of
backup processing capabilities. This is a kind of N-version programming, or it may be realized as
a form of analytic redundancy.

Another variant of this pattern occurs when all the components process the input in parallel—an
instance of active redundancy of software components—and some selection logic looks at the re-
sults of each component’s acceptance tests in order, starting from the primary. The major

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[Distribution Statement A] Approved for public release and unlimited distribution

difference between these two variants is that the first variant invokes the processing components
serially, and the second one invokes them in parallel.

Benefits for robustness:

o This pattern is useful in cases where the processing is complex, where high availability is de-
sired, but where hardware redundancy is not a viable option. This pattern does not protect
against hardware failures, of course, but it does provide some protection against software fail-
ures and bugs.

Tradeoffs:

o Ifthe serial variant of this pattern is employed, latency (from the time the input arrives to the
time that an acceptable result is produced) will be increased in cases where one or more ac-
ceptance tests fail.

o Ifthe parallel variant of this pattern is employed, substantially more CPU resources will be
consumed to process each input.

5.2.6 Forward Error Recovery

The Forward Error Recovery pattern is a kind of active redundancy employed in situations where
relatively high levels of faults are expected. The idea of Forward Error Recovery originated in the
telecommunications domain, where communication over noisy channels resulted in large numbers
of packets being damaged, resulting in large numbers of packet retries. This was expensive, par-
ticularly in the early days of telecommunications or in cases where latency was very large (for ex-
ample, communication with space probes). To attempt to address this shortcoming, packets were
encoded with redundant information so that they could self-detect and self-correct a limited num-
ber of errors. This approach to detecting and correcting errors has been manifested in many other
domains, such as in RAID (Redundant Arrays of Inexpensive Disks). In this case, with large num-
bers of disks, failures are expected to occur on a regular basis, so redundant information is stored
on the disk array (hence the R in RAID), enabling the array to function at a high level of availabil-
ity, masking errors on individual disks.

Benefits for robustness:

o This pattern is useful in cases where the underlying hardware or software is unreliable and
where it is possible to encode redundant information.

Tradeoffs:

o As with most patterns for robustness, higher levels of availability can be costly. For example,
the higher the level of redundancy in a disk array, the more expensive it is (on a per-kilobyte
stored basis), and the more redundant information included in a packet, the lower the effective
bandwidth of the network.

o Ifthe number of errors and combinations of errors are expected to be high, then creating such
Forward Error Recovery schemes can be complex and costly and may only cover a small set
of the erroneous states.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[Distribution Statement A] Approved for public release and unlimited distribution

5.2.7 Health Monitoring

In complex networked environments, just determining the health of a remote service may be chal-
lenging. To achieve high levels of availability, it is necessary to be able to tell, with confidence,
whether a service is operating consistently with its specifications. The Health Monitoring pattern
(sometimes called “Endpoint Health Monitoring”) addresses this need. The monitor is a separate
service that periodically sends a message to every endpoint that needs to be monitored. The sim-
plest form of this pattern is ping/echo, where the monitor sends a ping message, which is echoed
by the endpoint. But more sophisticated checks are common—instances of the monitor tactic—
such as measuring the round-trip latency for send/response messages and checking on various
properties of the monitored endpoints such as CPU utilization, memory utilization, application-
specific measures, and so forth.

Benefits for robustness:

o This pattern is useful in cases where the system is distributed and where the health of the dis-
tributed components cannot be assessed locally in a timely fashion (for example, by waiting
for messages to time out).

o This pattern also allows for arbitrarily sophisticated measures of health to be implemented.

Tradeoffs:

o As with the other patterns for robustness, monitoring requires more up-front work than not
monitoring. It also requires additional runtime processing and network bandwidth.

5.2.8 Throttling

In contexts where demand on the system, or a portion of the system, is unpredictable, the Throt-
tling pattern can be employed to ensure that the system will continue to function consistently with
its service-level agreements and that resources are apportioned consistently with system goals.
The idea is that a component, such as a service, monitors its own performance measures (such as
its response time), and when it approaches a critical threshold it throttles incoming requests. A
number of throttling strategies can be employed—each of these corresponding to a “Control Re-
source Demand” tactic [Bass 2012]. For example, the throttling could mean rejecting requests
from certain sources (perhaps based on their priority, criticality, or the amount of resources that
they have already consumed), disabling or slowing the response for specific request types (for less
essential functions), or reducing response time evenly for all incoming requests.

Benefits for robustness:

e Aswe described in Section 2, the goal of robustness is for a software-intensive system to
keep working, consistently with its specifications, despite the presence of external stresses,
over a long period of time. The Throttling pattern aids in this objective by ensuring that es-
sential services remain available, at the cost of degrading some kinds or qualities of the sys-
tem’s functionality.

Tradeoffs:

As with the other patterns for robustness, throttling requires more up-front work than not throt-
tling, and it requires a small amount of runtime processing to monitor critical resource usage lev-
els and to implement the throttling policy.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[Distribution Statement A] Approved for public release and unlimited distribution

6 Analyzing for Robustness

An analyst’s job is to judge the appropriateness of the mechanisms built into the architecture of a
system S, in light of the robustness stimuli that the system will need to withstand. And as stated
above, “appropriateness” is really a function of the risks and costs of the anticipated integrations.
Analysts can specify these potential or anticipated integrations using scenarios, as we exemplified
above, and for consistency and repeatability they can guide stakeholders to derive those scenarios
from the robustness general scenario.

Analyzing for robustness at different points in the software development lifecycle will take differ-
ent forms. The different analysis options are sketched in Table 3. If analysts only have a reference
architecture or a functional architecture, for example, then they cannot make detailed predictions
or claims about the level of difficulty associated with achieving a desired robustness response
measure. What the analyst can employ, at that early stage, is a checklist or tactics-based question-
naire. These analysis techniques will reveal the designer’s intentions with respect to robustness.

On the other hand, if the analysts have received a defined and documented [Clements 2010] prod-
uct architecture—perhaps including views such as Functional, Hardware, and Software Architec-
ture—but little or no coding has been done, they can still employ checklists and tactics-based
questionnaires to understand the design intent. But as shown in Table 3, the analysts can also
begin to think about employing analysis models.

The point is that there is no one-size-fits-all analysis methodology and tools that we can recom-
mend: The analysis team needs to respond appropriately to whatever artifacts have been made
available for analysis. And the analysis team and the product owner need to understand that the
accuracy of the analysis and expected degree of confidence in the analysis results will vary ac-
cording to the quality of the available artifacts.

Table 3: Lifecycle Phases and Possible Analyses for Robustness

Lifecycle Phase Typical Available Artifacts Possible Analyses

Early Design Set of selected mechanisms/tactics/patterns Checklist
Tactics-based questionnaire

Software Architecture | Set of containers for functionality (e.g., modules, Checklist
Defined services, microservices) and their interfaces Tactics-based questionnaire

Model-based analyses

Implemented System Set of elements—services, processes, threads, Checklist
etc.—and their interaction mechanisms—calls,
pub/sub, messages, etc.—along with the mapping
of these elements to hardware and networks

Measurement-based analyses
Model-based analyses

6.1 Tactics-Based Questionnaire

Architectural tactics have been presented thus far as design primitives, following the concepts and
principles introduced in Software Architecture in Practice [Bass 2012] and Designing Software
Architectures [Cervantes 2016]. However, since tactics are meant to cover the entire space of ar-
chitectural design possibilities for a quality attribute, we can use them in analysis as well. Each

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[Distribution Statement A] Approved for public release and unlimited distribution

tactic is a design option for the architect at design time. But used in hindsight, they represent a
taxonomy of the entire design space for robustness.

Specifically, we have found these tactics to be very useful guides for interviews with the architec-
ture team. (Although the information could be derived from other sources such as document re-
view or reverse engineering, interviews with the architect are typically quite efficient and can be
very revealing.) These interviews help analysts gain rapid insight into the design approaches
taken, or not taken, by the architect and the risks therein. These might be risks of omission (e.g.,
the architect did not use this tactic and should have), risks of commission (e.g., this tactic is not
really required, which increases costs with little or no commensurate benefit), risks on how a tac-
tic was implemented (e.g., the team implemented a tactic themselves when a better, more mature
alternative already existed), or managerial risks (e.g., the tactic has not been properly communi-
cated to the team).

For example, consider the list of robustness tactics-inspired questions presented in Table 4. The
analyst asks each question and records the answers in the table.

Table 4: Example Tactics-Based Robustness Questions

Tactics Tactics Question Sup- Risk | Design Rationale and

Group ported? Decisions and Assumptions
(Y/N) Location

Detect Does the system use an element to

Faults monitor the state of health of other

parts of the system?

A system monitor can detect failure
or congestion in the network or other
shared resources, such as from a de-
nial-of-service attack.

Does the system use ping/echo to
detect a failure of an element or con-
nection or network congestion?

Does the system use a heartbeat—a
periodic message exchange between
a system monitor and a process—to
detect a failure of an element or con-
nection or network congestion?

Does the system use a timestamp to
detect incorrect sequences of events
in distributed systems?

Does the system employ condition
monitoring to check conditions in a
process or device or to validate as-
sumptions made during the design?

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[Distribution Statement A] Approved for public release and unlimited distribution

Tactics
Group

Tactics Question

Sup-
ported?
(Y/IN)

Risk

Design
Decisions and
Location

Rationale and
Assumptions

Does the system employ sanity
checking to check the validity or rea-
sonableness of specific operations or
outputs of a computation?

Does the system use voting to check
that replicated elements are produc-
ing the same results?

The replicated elements may be
identical replicas, functionally redun-
dant, or analytically redundant.

Does the system use exception de-
tection to detect a system condition
that alters the normal flow of execu-
tion (e.g., system exception, parame-
ter fence, parameter typing, or
timeout)?

Can the system do a self-test to test
itself for correct operation?

Recover
from
Faults
(Prepara-
tion and
Repair)

Does the system employ active re-
dundancy (hot spare)?

In active redundancy, all nodes in a
protection group (a group of nodes
where one or more nodes are “ac-
tive,” with the remainder serving as
redundant spares) receive and pro-
cess identical inputs in parallel, allow-
ing redundant spares to maintain
synchronous state with the active
node(s).

Does the system employ passive re-
dundancy (warm spare)?

In passive redundancy, only the ac-
tive members of the protection group
process input traffic; one of their du-
ties is to provide the redundant
spare(s) with periodic state updates.

Does the system employ spares
(cold spares)?

Here, redundant spares of a protec-
tion group remain out of service until
a failover occurs, at which point a
power-on-reset procedure is initiated
on the redundant spare before it is
placed in service.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution

33

Tactics
Group

Tactics Question

Sup-
ported?
(Y/IN)

Risk

Design
Decisions and
Location

Rationale and
Assumptions

Does the system employ rollback, so
that it can revert to a previously
saved good state (the “rollback line”)
in the event of a fault?

Does the system employ exception
handling to deal with faults?

Typically, the handling involves either
reporting the fault or handling it, po-
tentially masking the fault by correct-
ing the cause of the exception and
retrying.

Can the system perform in-service
software upgrades to executable
code images in a non-service-affect-
ing manner?

Does the system systematically retry
in cases where the element or con-
nection failure may be transient?

Can the system simply ignore faulty
behavior (e.g., ignoring messages
sent from a source when it is deter-
mined that those messages are spu-
rious)?

Does the system have a policy of
degradation when resources are
compromised, maintaining the most
critical system functions in the pres-
ence of element failures and drop-
ping less critical functions?

Does the system have consistent pol-
icies and mechanisms for reconfigu-
ration after failures, reassigning
responsibilities to the resources left
functioning, while maintaining as
much functionality as possible?

Recover
from
Faults
(Reintro-
duction)

Can the system operate a previously
failed or in-service upgraded element
in a “shadow mode” for a predefined
time prior to reverting the element
back to an active role?

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[Distribution Statement A] Approved for public release and unlimited distribution

34

Tactics Tactics Question Sup- Risk | Design Rationale and
Group ported? Decisions and Assumptions
(Y/N) Location

If the system uses active or passive
redundancy, does it also employ
state resynchronization, to send
state information from active to
standby elements?

Does the system employ escalating
restart to recover from faults by vary-
ing the granularity of the element(s)
restarted and minimizing the level of
service affected?

Can message processing and routing
portions of the system employ non-
stop forwarding, where functionality
is split into supervisory and data
planes?

In this case, if a supervisor fails, a
router continues forwarding packets
along known routes while protocol in-
formation is recovered and validated.

Prevent Can the system remove elements
Faults from service, temporarily placing a
system element in an out-of-service
state for the purpose of mitigating po-
tential system failures?

Does the system employ transac-
tions, bundling state updates so that
asynchronous messages exchanged
between distributed elements are
atomic, consistent, isolated, and du-
rable?

Does the system use a predictive
model to monitor the state of health
of an element to ensure that the sys-
tem is operating within nominal pa-
rameters?

When conditions are detected that

are predictive of likely future faults,
the model initiates corrective action.

When using this set of questions in an interview, the analyst records whether or not each tactic is

supported by the system’s architecture, according to the opinions of the architect. When analyzing

an existing system, the analyst can additionally investigate

o whether there are any obvious risks in the use (or non-use) of this tactic. If the tactic has been
used, record how it is realized in the system (e.g., via custom code, generic frameworks, or
externally produced elements).

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[Distribution Statement A] Approved for public release and unlimited distribution

o the specific design decisions made to realize the tactic and where in the code base the imple-
mentation (realization) may be found. This is useful for auditing and architecture reconstruc-
tion purposes.

o any rationale or assumptions made in the realization of this tactic.

These questionnaires can be used by an analyst, who poses each question to the architect and rec-
ords the responses, as a means of conducting an architecture analysis. To use these questionnaires,
simply follow these four steps:

1. For each tactics question, fill the “Supported” column with Y if the tactic is supported in the
architecture and with N otherwise. The tactic name in the “Tactics Question” column is
bolded.

2. Ifthe answer in the Supported column is Y, then in the “Design Decisions and Location”
column describe the specific design decisions made to support the tactic and enumerate
where these decisions are manifested (located) in the architecture. For example, indicate
which code modules, frameworks, or packages implement this tactic.

3. Inthe “Risk” column, indicate the anticipated or experienced difficulty or risk of implement-
ing the tactic using a scale: H = High, M = Medium, L = Low. For example, a tactic that is of
medium difficulty or risk to implement (or which is anticipated to be of medium difficulty, if
it has not yet been implemented) would be labeled M.

4. In the “Rationale and Assumptions” column, describe the rationale for the design decisions
made (including a decision to not use this tactic). Briefly explain the implications of this de-
cision. For example, explain the rationale and implications of the decision in terms of the im-
pact on cost, schedule, evolution, and so forth.

While this interview-based approach might sound simplistic, it can be very powerful and insight-
ful. In architects’ daily activities, they likely do not take the time to step back and consider the
bigger picture. A set of interview questions such as those shown in Table 4 forces an architect to
do just that. And this process can be quite efficient: A typical interview for a single quality attrib-
ute takes between 30 and 90 minutes.

6.2 Architecture Analysis Checklist for Robustness

As presented in the work of Bass and colleagues, one can view an architecture design as the result
of applying a collection of design decisions [Bass 2012]. We view architecture design and analy-
sis as two sides of the same coin [Cervantes 2016]: any design decision made by an architect
should be analyzed. Design and analysis are not distinct activities—they are intimately related.
What we present next is a systematic categorization of these decisions so that an architect or ana-
lyst can focus attention on those design dimensions likely to be most troublesome.

There are seven major categories of design decisions that face an architect. These decisions will
affect both software and, to a lesser extent, hardware architectures. These are

1. allocation of responsibilities
2. coordination model

3. data model
4

mapping among architectural elements

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[Distribution Statement A] Approved for public release and unlimited distribution

5. management of resources
6. binding time
7. choice of technology

These categories are not the only way to classify architectural design decisions, but they do pro-
vide a rational (and exhaustive) division of concerns. The concerns addressed in these categories
might overlap, but it’s all right if a particular decision exists in two different categories because
the duty of the architect and of the analyst is to ensure that every important decision has been con-
sidered.

Some of these design decisions might be trivial. For example, an architect may have no choice of
technology decisions to make if he is required to implement the software on a prespecified plat-
form over which he has little or no control. Or for some applications, the data model might be
trivial. But for other categories of design decisions, the architect might have considerable latitude.

For each quality attribute, we enumerate a set of questions—a checklist—that will lead an analyst
to question the decisions made, or not made, by the architect, and for some of these decisions to
refine the questions into a deeper analysis. The checklist for robustness is presented below.

Category Checklist

Allocation of Determine the system responsibilities that need to be robust. Within those responsibili-

responsibilities ties, ensure that additional responsibilities have been allocated to detect an omission,
crash, incorrect timing, or incorrect response. Additionally ensure that there are respon-
sibilities to

e log the fault

« notify appropriate entities (people or systems)
e disable the source of events causing the fault
e be temporarily unavailable

o fix or mask the fault/failure

e operate in a degraded mode

Coordination model Determine the system responsibilities that need to be robust. With respect to those re-
sponsibilities,
e ensure that coordination mechanisms can detect an omission, crash, incorrect tim-

ing, or incorrect response. Consider, for example, whether guaranteed delivery is
necessary. Will the coordination work under conditions of degraded communication?

e ensure that coordination mechanisms enable the logging of the fault, notification of
appropriate entities, disabling of the source of the events causing the fault, fixing or
masking the fault, or operating in a degraded mode.

e ensure that the coordination model supports the replacement of the artifacts used
(processors, communications channels, persistent storage, and processes). For ex-
ample, does replacement of a server allow the system to continue to operate?

Determine if the coordination will work under conditions of degraded communication, at
startup/shutdown, in repair mode, or under overloaded operation. For example, how
much lost information can the coordination model withstand and with what conse-
quences?

Data model Determine which portions of the system need to be robust. Within those portions, deter-
mine which data abstractions, along with their operations or their properties, could
cause a fault of omission, a crash, incorrect timing behavior, or an incorrect response.

For those data abstractions, operations, and properties, ensure that they can be disa-
bled, be temporarily unavailable, or be fixed or masked in the event of a fault.

For example, ensure that write requests are cached if a server is temporarily unavaila-
ble and performed when the server is returned to service.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[Distribution Statement A] Approved for public release and unlimited distribution

Mapping among
architectural
elements

Determine which artifacts (processors, communication channels, persistent storage, or
processes) may produce a fault: omission, crash, incorrect timing, or incorrect response.

Ensure that the mapping (or re-mapping) of architectural elements is flexible enough to
permit recovery from the fault. This may involve a consideration of

e which processes on failed processors need to be reassigned at runtime

¢ which processors, data stores, or communication channels can be activated or reas-
signed at runtime

e how data on failed processors or storage can be served by replacement units

¢ how quickly the system can be reinstalled based on the units of delivery provided

e how to (re-)assign runtime elements to processors, communication channels, and
data stores

When employing tactics that depend on redundancy of functionality, the mapping from

modules to redundant elements is important. For example, it is possible to write one

module that contains code appropriate for both the active element and backup elements

in a protection group.

Management of
resources

Determine what critical resources are necessary to continue operating in the presence
of a fault: omission, crash, incorrect timing, or incorrect response. Ensure there are suf-
ficient remaining resources in the event of a fault to log the fault; notify appropriate enti-
ties (people or systems); disable the source of events causing the fault; be temporarily
unavailable; fix or mask the fault/failure; and operate normally, in startup, shutdown, re-
pair mode, degraded operation, and overloaded operation.

Determine the availability time for critical resources, what critical resources must be
available during specified time intervals, time intervals during which the critical re-
sources may be in a degraded mode, and repair time for critical resources. Ensure that
the critical resources are available during these time intervals.

For example, ensure that input queues are large enough to buffer anticipated messages
if a server fails so that the messages are not permanently lost.

Binding time

Determine how and when architectural elements are bound. If late binding is used to al-
ternate between elements that can themselves be sources of faults (e.g., processes,
processors, communication channels), ensure the chosen robustness strategy is suffi-
cient to cover faults introduced by all sources. For example:

* If late binding is used to switch between artifacts such as processors that will receive
or be the subject of faults, will the chosen fault detection and recovery mechanisms
work for all possible bindings?

e |[f late binding is used to change the definition or tolerance of what constitutes a fault
(e.g., how long a process can go without responding before a fault is assumed), is
the recovery strategy chosen sufficient to handle all cases? For example, if a fault is
flagged after 0.1 ms, but the recovery mechanism takes 1.5 s to work, that might be
an unacceptable mismatch.

e What are the robustness characteristics of the late binding mechanism itself? Can it
fail?

Choice of
technology

Determine the available technologies that can (help) detect faults, recover from faults,
and reintroduce failed elements.

Determine what technologies are available that support the response to a fault (e.g.,
event loggers).

Determine the robustness characteristics of chosen technologies themselves: What
faults can they recover from? What faults might they introduce into the system?

6.3 Robustness Models and Analysis Techniques

The field of reliability and availability modeling has existed for decades, dating back at least to
World War II era research, where it was applied to physical systems, typically control systems

and their associated electronics. Traditional reliability approaches are based on the hardware
“wear-out” model. As software became more prominent in systems, many of the hardware ap-
proaches were “translated” to software. As time went on, software engineers discovered that

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

software failure mechanisms are different than hardware failure mechanisms, and so they devel-

oped new techniques and approaches.

Typically, evaluation of reliability falls into two broad categories: measurement-based techniques
and model-based techniques. In this section we provide a brief overview of model-based tech-
niques. We focus on models because these can be applied earlier in the system lifecycle so that
designers can explore alternative design options. In this way the designer can satisfy robustness
requirements while balancing other concerns such as cost, performance, and resource utilization.

Modern reliability and availability analysis models broadly fall into three categories:

1. black-box models, where a system is viewed as a monolith, where there is no insight into its
internal structure, and where all measurement is focused on its input and outputs

2. white-box models, where the internal structure of a system is explicitly considered and mod-
eled using probabilistic methods

3. combined models, which treat subsystems as black boxes but which analyze the system as a
white box (sometimes termed “gray-box testing”)

And the most common modeling formalisms can be categorized as either state-space or non-state-

space techniques, as shown in Figure 3.

Reliability
Block Diagrams

/
[Non-State-Space HReIiabiIity Graphs]

Fault Tree with
suitiiree Repeated Events

Discrete
Time
Continuous

Homogeneous
! f .‘I"\ | Semi Markov

\MNon A Markov Regenerative

| \ Markovian

\ \ Phase type expansion

{Deterministic]

'(Multilevel Model HerrarchkcaI Mode!HFixed Point IterationHCase Studies]

R

| Markovian

,,,,,,,,,,,,,,,,, Markov
Reward Model
Stochastic | Stochastic
Petri Net Reward Net

Modeling
Formalisms

Figure 3: Reliability Modeling Formalisms [Source: Trivedi 2017, Figure 2.6, p. 28]

Source: K.S. Trivedi & A. Bobbio, Reliability and Availability: Modeling, Analysis, Applications. © Cam-
bridge University Press 2017. Reproduced with permission of The Licensor through PLSclear.

Architecture is about structure and relationships; accordingly, we will focus on modeling tech-
niques where analysts need to know something about the internal structure of a system (i.e.,
white-box and combined models). These models help designers to perform “what if” analyses by
allowing predictions to be made when changes to components’ configurations, their relationships,
or properties are made in the early design process. Modeling also aids in evolutionary design,
where a set of iterative refinements of and predictions about the impact of changes in design deci-
sions are key considerations in analyzing alternatives. “Having dependability modeling tools

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[Distribution Statement A] Approved for public release and unlimited distribution

continuously available for use ... by the system designers is important because of the exploratory
nature that tends to characterize human creative work.” [Boyd 1998]. Boyd and Lau offer some
advice on selecting the modeling technique that will best serve a system’s needs: “Generally, the
best strategy is to match the modeling method to the characteristics and required level of detail in
the behavior of the system that must be modeled” [Boyd 1998]. They also recommend selecting
the simplest appropriate modeling method. To get this decision right, therefore, an architect
should understand “the characteristics, capabilities, and limitations of all modeling methods in the
spectrum” [Boyd 1998].

Many questions can be answered through such modeling. Here are some examples:
o How reliable are the non-repairable components and systems?
o How available is the repairable system?
e Where in the system are there most likely to be faults or failures?
-~ What are the failure rates of these components?
- What are the desired repair rates?
- What are the failure modes of these components?
e Where could the system benefit from redundancy?
e Where are the single points of failure?
e Which are the critical components and hardware?
- Where is it important to lower fault detection and recovery times?
- Where can monitoring have the most benefit? What are the monitoring frequencies?
- What are the required repair rates?

- Where could the system benefit from fault prevention strategies (e.g., defining and mon-
itoring thresholds, retry)?

o How important is it to have spare capacity readily available?

o Where are the opportunities to apply tactics and patterns likely to have significant impact on
important measures?

When considering modeling to answer important architectural questions, an important tradeoff be-
tween simplicity and fidelity needs to be accounted for when deciding which modeling techniques
to use to analyze the design decisions. Figure 4 represents a spectrum of modeling techniques that
generally become increasingly more complex and provide higher fidelity from left to right.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[Distribution Statement A] Approved for public release and unlimited distribution

NASA Boyd Spectrum of Modeling
Methods

. "ty block Markov models Colored Petri nets i t_\,fpe
diagrams and fault trees expansion

| |
| | l
h | L4 h 4

> Increasing complexity and fidelity to system behavior = ‘

'y T F Y A
|

g : Generalized g :
Digraphs Dynamic fault trees stochastic Petri nets Simulation

Figure 4: A Spectrum of Modeling Methods [Derived from Boyd 1998]

Non-state-based techniques such as reliability block diagrams (RBDs) and fault tree analysis
(FTA) can be done early during the design process, often without experts. The initial iterations of
these models provide only modest confidence in success or failure predictions, but they do not re-
quire detailed knowledge about the eventual system. The low up-front investment in these tech-
niques can be easily recouped in terms of providing the ability to try “what if” design
modifications early in the lifecycle and to predict the impact on important reliability measures.
Both RBDs and FTA are typically refined as the team learns, through iterative design, to provide
better predictions on system reliability and availability. These techniques are common starting
points and provide inputs to modeling techniques further to the right in Figure 4.

State-based techniques such as Markov modeling, generalized stochastic Petri nets, and colored
Petri nets are higher fidelity modeling techniques that allow designers to model more than success
or failure. These state-based techniques allow them to model complex sets of failures and repair
modes. Designers can predict the probability of being in a certain state (or place for Petri nets) at a
certain step or time. These models often require modeling experts and deeper knowledge of the
system. The barrier to adoption is thus higher since the modeling experts and designers often need
to work together for long periods of time to generate and validate the models.

Both non-state-based and state-based techniques can help analysts make predictions for system
robustness requirements and provide the ability to consider the consequences of different design
decisions. These techniques are often used together to reason about reliability and availability in a
system.

Our treatment of modeling is not meant to be complete or exhaustive. Our goals are to provide a
window into a subset of modeling techniques available for analysts to explore and to show how
they can be used to support analysis by illustrating how a design can be modeled and important
quality attribute characteristics can be predicted.

We will briefly describe two non-state-based modeling techniques (RBDs and fault trees) and fin-
ish with a description of two stochastic state-based techniques (Markov models and Petri nets).
We will show how an architect can walk an analyst through design changes (for example,

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[Distribution Statement A] Approved for public release and unlimited distribution

applying tactics or patterns to evolve an existing design) to show how they impact reliability and
availability predictions from the models. These predictions can be used to provide evidence that
important quality attribute measures, such as uptime or MTTF, will be met.

6.3.1 Non-state Based Modeling Techniques

The non-state-based techniques we will describe are RBDs and fault trees. These two modeling
techniques can easily be converted into each other, but there may be information loss during the
transformations (for example, identified causes could be lost converting a fault tree to an RBD).

Reliability block diagrams, or RBDs, are a graphical representation of the system that is used to
assess the probability of successful operation. The blocks, or components, are linked based on the
impact to robustness and they are the smallest unit considered in the analysis. These block dia-
grams primarily model system behavior using series and groups of components. Reliability for a
series of components is predicted by taking the product of each component’s probability of being
operational.

The example in Figure 5 shows a series consisting of three components, where each is associated
with a probability of being operational, estimated as .9 (sensor), .97 (controller), and .99 (actua-
tor), respectively. In this case, the predicted reliability is R =.9 * .97 * .99 = ~.864. Based on this
prediction, the architect made a second iteration of the design and decided to use sensor redun-
dancy to improve the overall reliability.

Sensor || g Controller Actuator

Figure 5: A Simple Series RBD Diagram

For systems that use redundancy or parallelism, the reliability for the group of components uses
the probability for each redundant component to calculate the reliability of the group. Figure 6
represents the new design.

i Sensor 1
A 4

i Sensor 2 L] [Controller - E Actuator
»
g Sensor 3

Figure 6: A Group of Sensors (Employing an Active Redundancy Tactic) to Improve Robustness

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[Distribution Statement A] Approved for public release and unlimited distribution

The designers changed the design and the model to introduce redundancy in the form of three re-
dundant sensors. They focused on improving the lowest probability block, which is currently .9.

Thus, the reliability of this component will need to be recalculated. The calculation for the relia-

bility of a group of components is represented by the following equation [Cepin 2011]:

Rl—f[(l—R,—)

i
In this case, the calculation for the reliability of the group of sensors is
R=1-(1-.9)(1-.9)(1-.9) = .999

The reliability of this system can now be calculated as .999 * .97 * .99. This “what if” design
change dramatically improves the reliability for the system from ~.864 to an overall predicted re-
liability of ~.959. As an analyst you can see the power of this type of rapid analysis: it quickly
shines a light on tradeoffs that designers can make. This example shows that three redundant
lower cost sensors may provide better reliability than one higher cost sensor that has a higher indi-
vidual probability of being in service. The optimal decision may also depend on other contextual
factors such as resource utilization, power consumption, and weight. The analyst should be aware
of these other factors during an evaluation.

The graph in Figure 7 shows examples of how the reliability of a component or subsystem im-
proves as the number of redundant components increases.

1

0.8

0.6
—component reliability =0.3
0.4 component reliability = 0.5
component reliability = 0.7

0.2
component reliability = 0.9

0

1 2 3 4 5 6 7 8

Figure 7: Number of Parallel Components [Derived from Cepin 2011]

The strengths of RBDs are that they are fairly simple to create and the calculations for the analysis
are straightforward. They are an excellent way for analysts to explore what-if scenarios with de-
signers and to identify components where design changes such as redundancy have a large impact
on overall reliability. The weakness of this technique is that the calculation is only as good as the
estimates of the probabilities of the components being operational. RBDs also provide an all-or-
nothing result, ignoring partial failures or degraded modes.

A fault tree is a top-down logical diagram that displays the interrelationships between a critical

system event and its causes. Fault trees are concerned with the failure case, in contrast to RBDs,

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[Distribution Statement A] Approved for public release and unlimited distribution

which focus on probability of success. A fault tree has a top event that provides a description of
the critical system event, basic events at the lowest level that have identified causes, and logic
gates (e.g., and, or, voting or) that provide the logical relationship between the top event and the
basic events [Vesely 2002].

The analyses that can be done with fault trees are both qualitative (e.g., identifying single points
of failure) and quantitative (e.g., calculating system uptime, failure probabilities of operations).
FTA can be used to calculate probabilities of failure for continuously operating non-repairable
systems, and there are dynamic fault trees for continuously operating repairable systems [NRC
2015]. Figure 8 and Figure 9 are the equivalent fault trees for the simple series and the parallel
sensors from the previous RBD examples.

Actuator does not send
signal in time to correct the
unsafe condition

Controller is unaware of

£ Controller misses deadline
unsafe condition

Sensor provides a Restart takes longer
false negative than specified

Software fails

Figure 8: Equivalent Fault Tree of Simple Series RBD Diagram

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[Distribution Statement A] Approved for public release and unlimited distribution

Actuator does not send
signal in time to correct the
unsafe condition
p=".04067

Controller is unaware of
unsafe condition
p=.001

Controller misses deadline
p=.03

Actuator fails
p=01

[Sensor [A] is not]| ensor [B] is not| Sensor [C] is not|
operating operating operating
properly properly properly
p=1 p=1 p=1

Restart takes longer
than specified
p=.001

Software fails
p=.03

Sensor [A] Se_nsor [B] Sensor [C]

Bl e Sensor [A] fails provides value 1 pravides value Sensar [C] fails
out of range p=08 out of range 09 out of range p=09%

p=.01 p=01 p=01

Figure 9: Equivalent Fault Tree for a Group of Sensors (Employing a Redundance Tactic) to Improve
Robustness

We will not show the calculations for the fault trees, but note that the numbers are for probability
of failure. For the top event, the failure probability is ~.041, in contrast to the RBD calculation of
~.959 reliability.

Below we will discuss the characteristics and metrics as well as the strengths and weaknesses of
RBDs and fault trees. We discuss these together since many sources highlight the similarities of
the techniques. It is important to acknowledge that fault trees focus on failures and their causes,
while RBDs focus on successful operation.

Example Characteristics/Metrics from FTA and RBDs:

o We can calculate MTTF using the failure rate of our non-repairable example. Failure rate =
.041 per 100 hours of operation. The MTTF = (1 /.041) * 100 = ~2439.24 hours.

o We can calculate the reliability at points in time for a non-repairable system [Reliability Ana-
Iytics 2010-2020]. Units are hours.

~ R(100) = .95983
~ R(200)=.92127
~ R(500) = .81465
- R(2,500) = 35879
~ R(5,000)=.12873

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[Distribution Statement A] Approved for public release and unlimited distribution

If we change our model to a repairable system and estimate the MTTR, then we can calculate
uptime and downtime percentages for our system. Assume our MTTR = 1 hour per failure,
including detection time, and our MTTF previously calculated as ~2,439.24 hours will be our
estimate for MTBF. If we run the system continuously for 1,000,000 hours, we would expect
~409.96 failures during this time period.

Predicted downtime would be ~409.96 hours or ~.04096%.
- Predicted uptime would be ~999,590.04 hours or ~99.95904%.

We can predict the probabilities of failure and success as illustrated in the example.

With FTA and RBDs, analysts can reason about
- where in the system developers can improve the failure rate and MTBF through retries

- critical system components that require monitoring to reduce MTTR through early de-
tection (You can also use these models to know where monitoring can be used to prevent
failures, such as when resource thresholds are reached.)

- critical system components that could be made more reliable with runtime diagnostics

Advantages/Strengths:

These techniques support qualitative analysis to identify critical components that need moni-
toring, low MTTR, and other strategies that improve robustness.

There is a lower barrier to adoption than with state-based techniques. RBDs and fault trees
can be used by designers. Markov models and Petri nets generally require more modeling ex-
pertise.

They allow concise description of the system under study and can be evaluated quickly as the
architect changes the design.

The calculations of component uptime, downtime, and probability of failure are supported by
tools.

These techniques provide insight into where hardware, software, and analytic redundancy can
improve robustness.

The fault trees and RBD models are often more closely aligned with the structure of the de-
sign than Markov models and Petri nets.

Disadvantages/Weaknesses:

It can be difficult to model a complex system that includes a large number of components.
They can become difficult to manage and require significant effort to complete.

These models do not consider partial failures and degraded modes.

The probability calculations are only as good as the inputs. Early in the lifecycle analysts of-
ten deal with estimates, and high confidence analysis requires more information about the
system. This disadvantage will be alleviated somewhat when the models are kept up to date to
better support analysis through information gained during each design iteration.

FTA and RBDs “cannot represent dependencies occurring in real systems, such as imperfect
coverage, correlated failures, repair dependencies, non-zero detection/reconfiguration time,
performance-reliability dependence, and phased mission system models” [Trivedi 2017].

The FTA modeling approach is not useful for systems where components have interdepend-
encies.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[Distribution Statement A] Approved for public release and unlimited distribution

6.3.2 State-Based Modeling Techniques

The state-based technique we primarily explore is Markov modeling. We also summarize Petri
nets and a few of the challenges of Markov models that Petri nets address.

The basic components of Markov models are discrete and countable states and a set of transitions
between these states. The model must always be in a state and cannot be in more than one state at
a time. Also, from time to time the model must transition to other states. The states often represent
configurations or operational states. In their introduction to Markov modeling, Boyd and Lau ex-
plain that when modelling for robustness, states can be normal operation, presence of faults, fail-
ure, and degraded modes. The transitions define where the model can go from one state to another
and the length of time needed to go from one state to another, and the transition time can be con-
stant or time dependent [Boyd 1998]. For robustness, the transition rates are often related to fail-
ure rates and repair rates.

A Markov process is stochastic, and probability distributions for the future behavior of a system
depend only on the current state of the system and not on any previous state. A Markov chain is a
Markov process that represents system behavior in terms of random transitions between discrete
states.

Markov models of systems can be represented through a transition probability matrix where each
row is a state and each column represents the states that can be transitioned to from the current
state. They are also represented as acyclic graphs for non-repairable systems and cyclic graphs for
repairable systems. For systems that are non-repairable, the model’s prediction is the probability
that the system has not experienced failure (e.g., reliability). For systems that are repairable, the
prediction from the model is the probability that the system will be available or operational. The
Markov models allow analysts to predict the probabilities that the system in question will be in
undesirable states based on the current design, and this knowledge allows designers to make in-
formed decisions to reduce unacceptable probabilities.

In models of Markov processes, time can be modeled as discrete (i.e., transitions occur at unit-
timed intervals, and a transition must occur at each interval) and represented as a discrete-time
Markov chain (DTMC). Time can also be modeled as continuous (i.e., transitions can occur at any
real timed interval) and represented as a continuous-time Markov chain (CTMC). CTMCs can be
time homogeneous or nonhomogeneous. To be considered time homogenous, the CTMC must
have the same holding time every time the process enters state x. When exiting state x, all possible
transitions and their probabilities must remain the same. Nonhomogeneous CTMCs can be mod-
eled using Weibull distributions that allow for modeling of failure rates that vary over time (e.g.,
hardware burn-in and end of life).

“Markov chains can be used to analyze system reliability in terms of error states, occurrences, and
propagations” [Delange 2014]. We will first explore a simple example of a DTMC to estimate the
probability of being in certain states after a number of steps for a repairable system. We will then

explore a time-homogenous CTMC and use it to show a few iterations of analysis and refactoring

to improve the prediction of certain characteristics.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
[Distribution Statement A] Approved for public release and unlimited distribution

Our abstract DTMC example models a system that has three controllers, which each have the ca-

pacity to handle the management of 100 sensors and 50 actuators. This simple model can give an-

alysts a prediction of the probability that the system will be in degraded modes of operation.

Let’s suppose we have the following scenario for degraded modes that we must satisfy:

Scenario Part Value

Source Internal
Stimulus A controller fails.
Artifact A controller

Environment There are three controllers. One controller provides minimally acceptable service.

Response The system continues to process inputs from 200 sensors and 100 actuators.

Response Measure

Minimally acceptable service is available greater than 99.99% of the time.

The resulting model will have four states. The states are the following: all three controllers are
fully operational with the system at full capacity; two controllers are operational, reducing capac-
ity; one controller is operational, further reducing system capacity; and all controllers are offline,
resulting in no capacity to manage sensors and actuators. As we learn more about the system, ad-
ditional transitions could be added (e.g., two controllers are repaired at the same step, adding a
transition from one controller being operational back to three being operational). All possible
transitions from the current state to the potential next state must be equal to 1. The diagram and
matrix in Figure 10 illustrate how our Markov process can be represented.

m 3 i e P(53,53)=.1 f:—’*‘;"“h-.‘_\

o SR
<
P
/
=L

Figure 10: Markov Model Representing the States That Correspond to System Capacity

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

48

95 = (51,51) 0.05=(51,52) 0=(S1,53) 0= (S1,54)
85=(52,S1) .1=(52,52) .05= S2,53) 0= S2,54)
0=(53,51) 0.85=(53,52) .1=(53,53) .05=(S3,54)
0=(54,51) 0=(54,S2) 09=(54,S3) 0.1=(54,54)

The matrix above shows the capacity Markov model matrix (P) transition probabilities for the
four states. The state transitions (in parentheses) are usually omitted but are included here for clar-
ity. This transition matrix was input into a DTMC simulation tool provided by the Technische
Universitét Clausthal Institute of Mathematics [Clausthal n.d.]. The results—the relative frequen-
cies of each state—are shown in Figure 11.

Relative frequencies

1.0 0.939

0.8

0.6

0.4

0.2
0.058

0.0 0.003 0

Figure 11: Relative Frequencies Calculated for Each State in Our Markov Model from Our Initial Design

What information does this analysis provide to an analyst?
o There is a ~93.9% probability that the system is at full capacity (State 1 probability).

o There is a ~99.7% probability that the system will be able to handle 200 sensors and 100 actu-
ators (State 1 and State 2 combined probabilities).

o There is a ~0.3% probability that the system can only handle 100 sensors and 50 actuators
(the State 3 probability).

o We estimate a ~99.999% uptime, assuming uptime is defined as minimally acceptable service
reflected by States S1, S2, and S3. The graph shows zero for State S4, but that appears to be
an artifact of rounding. We do observe that in simulation State S4 was reached on occasion.

o The initial design does fulfill the 99.99% availability of minimal service requirement defined
in our scenario.

We will now present a simple CTMC that models two redundant controllers. We will show the
relationship between design decisions and how you can use modeling as an effective tool for ana-
lyzing the initial design. Then we will show how design changes can affect the predictions from
the model. By modeling in this way, you can collect evidence that important quality attribute
goals are met. Lastly, we illustrate how decisions made to support one quality attribute can have
an impact on the quality attribute measures that you are currently analyzing, and analysts can
therefore note tradeoffs. If designers understand the relative priorities of the two competing

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
[Distribution Statement A] Approved for public release and unlimited distribution

qualities, then they can make design changes in a disciplined way and analyze their impact
through the model.

Let’s suppose we have a scenario that we must satisfy the following:

Scenario Part Value

Source Internal

Stimulus A controller fails.

Artifact A controller

Environment There are two controllers. One controller is sufficient to process all critical features.
Response The system continues to process all critical inputs.

Response Measure Critical features are available 99.9% of the time.

The inputs to the CTMC model are the transition rates in the transition rate matrix. The mean fail-
ure rate is .08 failures per hour, and the mean repair rate is 3 per hour. We add an assumption that
components are repaired in the order they fail and that they are identical and fully synchronized.

The model has no absorbing states; therefore, it is repairable.

The CTMC states are as follows:

State 1, both controllers are operational. There are two transitions: (S1,S2) and (S1,S3).

State 2, Controller 1 fails, and Controller 2 is operational. There are two transitions: (S2,S1)
and (S2,54).

State 3, Controller 2 fails, and Controller 1 is operational. There are two transitions: (S3,S1)
and (S3,S5).

State 4, both controllers fail, and Controller 1 fails first. There is one transition: (S4,S3).
State 5, both controllers fail, and Controller 2 fails first. There is one transition: (S5,S2).

The diagram in Figure 12 represents the states and the transition rates.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

50

2 Component CTMC Markov model (hours)

P(S2,51)= 3.0

R(S1, 52) = .08 R(S2, 54) = .08

(54) Both fail; Component 1 fails first

(52) Component 1 fails; fomponent 2 operational

R(S4, 53) = 3.0

R(S5,52) =3.0

R(53, 51) = 3.0

R(S1, 53) = .08

(51) Both components fully operational

(55) Both fail; Conjponent 2 fails first

(53) Component 2 fails; fomponent 1 operational

R(53, 55) = .08

—-16=(51,51) .08=(51,52) 0.08=(51,53) 0=(S1,S4) 0=(S1,S5)
3.0=(5251) -3.08=(52,52) 0=(52,53) .08=(52,54) 0=(5255)

0=| 30=(53,S1) 0=(S3,52) —3.08=(S3,53) 0=(S3,54) .08=(S3,S5)
0 = (54,51) 0 = (54,52) 3.0 = (54,53) —3.0 =(54,54) 0= (54,55)
0=(S5S51) 3.0 =(S552) 0 = (55,53) 0=(5554) —3.0(55,55)

Figure 12: CTMC State Transition Diagram and CTMC State Transition Matrix

We now have all the inputs, and our model is set up. The transition matrix can be fed into a tool
that supports CTMCs. We used the CTMC simulation tool provided by the Technische Universi-
tét Clausthal Institute of Mathematics for our simulation.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
[Distribution Statement A] Approved for public release and unlimited distribution

0.026

0,001 0,001

Figure 13: Relative Frequencies Calculated for Each of the States in Our Markov Model from Our Initial
Design

What information does this provide to an analyst?

o There is a ~94.7% probability that both components are operational (State 1 probability).

o ~5.1% of the time, only one component is operational (State 2 and State 3 combined probabil-
ity).

o ~0.2% of the time, both components are down (State 4 and State 5 combined probability).

o The uptime is ~99.8% (assuming uptime is defined as one component being operational and
processing critical features).

o The initial design does not fulfill the 99.9% availability of critical features defined in our sce-
nario.

Given this result, the designers could now refactor the design to attempt to improve the availabil-
ity of critical features. The first step is to find the parameters that can be impacted through design
changes. In this model the parameters are the failure rate of .08 per hour and the repair rate of 3
per hour. The designers should therefore look for tactics that reduce the failure rate or reduce the
restart time. For example, looking through the FTA that provided the initial failure rate, they
might have discovered the following two causes: there were memory leaks in a subcomponent S1,
causing hanging processes that led to failures.

The designers then made two choices to address these causes: to use the substitution tactic by in-
tegrating a highly reliable commercial off-the-shelf product that implements the features of the S1
and to improve the process monitoring, by adding more monitors, to restart problematic processes
when faults are detected. Given these changes, they update the fault tree and estimate that these
changes will reduce the failure rate to .07 per hour.

After improving the failure rate by adding more process monitors and using substitution to reduce
the number of failures, we now predict an improvement.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
[Distribution Statement A] Approved for public release and unlimited distribution

—14=(51,51) .07=(S1,82) 0.07=(51,S3) 0=(S1,54) 0= (S155)
3.0=(52,S1) —3.07=(52,52) 0=(52,S3) .07=(52,5S4) O0=S255)

Q2=| 3.0=(S3,51) 0=(53,52) —3.07=(S3,53) 0=(53,54) .07 =(S3,55)
0 = (54,51) 0 = (54,52) 3.0 =(54,53) —3.0=(54,54) 0= (S4,55)
0=(55S1) 3.0 =(5552) 0 = (55,53) 0=(5554) —3.0(55,55)

Figure 14: CTMC State Transition Matrix for the Modified Design

0.022 0.022

0.001 0.001

Figure 15: Relative Frequencies Calculated for Each of the States in Our Markov Model from Our New
Design Reducing the Failure Rate
What information does this provide to an analyst?
o There is a ~95.5% probability that both components are operational (State 1 probability).
o ~4.4% of the time, only one component is operational (State 2 and State 3 combined probabil-
ity).
o ~0.2% of the time, both components are down (State 4 and State 5 combined probability).

o The overall uptime is ~99.8% (assuming uptime is defined as one component being opera-
tional and processing critical features). This has improved the design, but not enough to re-
duce the State 4 and 5 probability predictions to zero at 3 decimal points of precision.

o The new design, while improved, does not fulfill the 99.9% availability of critical features de-
fined in our scenario.

Given that the revised design has still not satisfied our scenario, we can examine contributors to
restart time. The designers can search for approaches for other quality attributes that impact restart
time. During this examination they might determine a few contributors to restart time:

o Late binding — Many components are bound at startup.
o There is an extensive use of configuration files.

o A large cache is populated at startup.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
[Distribution Statement A] Approved for public release and unlimited distribution

Since modifiability has the same priority as availability, we will avoid tradeoffs that affect modifi-
ability (e.g., the use of late binding and configuration files) unless absolutely necessary. Perfor-
mance is always important, but in this case slightly less so than availability. Upon examining the
cache, the designers conclude that many data items related to soft deadlines are cached at startup.
The designers thus opt to take a slight latency hit to fetch those items on an as-needed basis, rather
than pre-fetching and caching them. This incremental state resynchronization will lead to a
tradeoff with slightly greater latency, but it will improve availability. They estimate this will in-

crease the repair rate to 4 per hour.

—14=(51,51) .07=(51,52) 007=(51,83) 0=(51,54) 0=(51,55)
340 = (52,S1) —4.07 =(52,52) 0=(S2,53) .07 =(S2,54) 0= (S2,55)

Q3=| 4.0=(53,51) 0=(53,52) —407=(53,53) 0=(S3,54) .07 =(S3,55)

0 = (54,51) 0 = (54,52) 4.0 = (54,53) —4.0=(54,54) 0= (54,55)
0=(5551) 4.0 =(S552) 0 = (55,53) 0=(5554) —4.0(S5,55)

Figure 16: CTMC State Transition Matrix for the Second Modification of the Design That Improves the
Repair Rate

1.0

0.8

0.6

0.4

0.2

0.0

0.017 0.017 0 0

Figure 17: Relative Frequencies Calculated for Each of the States in Our Markov Model from Our New

Design Improving the Repair Rate

What information does this provide to an analyst?

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

There is a ~96.6% probability both components are operational (State 1 probability).

~3.4% of the time, only one component is operational (State 2 and State 3 combined probabil-
ity).

Less than 0.1% of the time, both components are down (State 4 and State 5 combined proba-
bility). The simulation did reach State 4 and 5, but less than .05% each.

There is now greater than ~99.9% uptime predicted (assuming uptime is defined as one com-
ponent being operational and processing critical features). The latest design change improved
the design enough to reduce the State 4 and 5 probability predictions to zero at 3 decimal
points of precision.

The new design does fulfill the 99.9% availability of critical features defined in our scenario.

54

[Distribution Statement A] Approved for public release and unlimited distribution

This simple example illustrates the relationships between design decisions and key model parame-
ters that provide predictions of important system quality attribute characteristics for analysts. We
also showed why it is important for designers and analysts to understand design decisions that af-
fect other quality attributes and the tradeoffs that can impact other response measures. The exist-
ing modifiability and performance approaches had a negative impact on availability, so the
designers determined that a tradeoff needed to be made. In this case, they were able to modify the
cache to improve startup time, at the cost of runtime latency.

Below we will highlight some metrics that can be ascertained by Markov modeling and then list
the strengths and weaknesses of this modeling.

Characteristics/Metrics:

o Uptime, downtime, calculating the number of steps or time spent in the states that correspond
to failure

e Probability of failure in a number of steps or time period from the current state

e MTTF for non-repairable systems within a number of steps or time period from the current
state

e MTBEF for repairable systems within a number of steps or time period from the current state
o Percentage of operations or requests that need retries

o Time to detect fault or failure or MTTD

« Failover time

o Failover success rate

o Time spent in degraded modes of operation

o % of time spent in degraded modes

Advantages/Strengths:

e Markov modeling simplifies the transitions between states. Since the Markov property states
that the next possible step depends only on where you are now and not any previous steps, it
is easier to predict the probability of being in a certain state in a number of transitions.

o Many tools are available that support solving Markov models to abstract away complex math-
ematics. You only need to define your states and transition rates or probabilities.

Disadvantages/Weaknesses:

e A complete accounting of all possible states and transitions is often not possible. When for-
mulating a Markov model of a complex system, it is difficult to ensure that all the possible
combinations of events in a subsystem have been considered. In our simple CTMC example,
we had 5 states. If we expanded to model five controllers, we would need 32 states plus an
additional number to track the order in which failures occurred.

o The property of not relying on previous states and only the current state may not allow you to
properly model your system. If a meaningful prediction relies on how or when you arrived in
the current state, then more complex modeling techniques will be needed.

Petri nets are often used to model systems with many components and alleviate, to some degree,
the state management issues of Markov models. A Petri net is a directed graph with places and
transitions. The places each define a capacity for tokens and represent conditions within the

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
[Distribution Statement A] Approved for public release and unlimited distribution

system being modeled. The transitions represent events occurring in the system that may cause
change in the condition of the systems. Arcs connect places to transitions and transitions to places.
There are never arcs directly from place to place or from transition to transition. A Petri net is an
n-tuple (set of places, set of transitions, input arcs, output arcs, or markings).

We adopt the following definitions for modeling Petri nets [Bobbio 1990]:

o Input arcs are directed arcs drawn from places to transitions. They represent the conditions
that need to be satisfied for an event to be activated.

e Output arcs are directed arcs drawn from transitions to places. They represent the conditions
resulting from the occurrence of the event.

o Input places of a transition are the set of places that are connected to the transition through
input arcs.

o Output places of a transition are the set of places to which output arcs exist from the transi-
tion.

« Tokens are represented as dots or integers associated with places.

o A marking of a Petri net is a vector listing the number of tokens in each place of the net.
Every Petri net defines an initial marking.

e When input places of a transition have the required number of tokens, the transition is ena-
bled.

e An enabled transition may fire removing one token from each input place and depositing one
token in each of its output places.

Petri nets are also often extended by associating time with the firing of transitions. In a stochastic
Petri net (SPN), the firing times are considered random variables. Our previous CTMC example
assumed exponential distributions, which can be modeled by an SPN with the same assumption.

Below is an example of an SPN with the assumption that the firing times are exponentially dis-
tributed. It is roughly equivalent to our CTMC Markov example of two components with failure
and repair, minus the tracking of which component failed first. It is important to note that with the
SPN we can model the example with two places instead of four states with the use of tokens. The
complexity of the Petri net does not depend on the number of components. We could add tokens
to model additional components and modify the initial marking. In this case, adding a third token
in the operational place would model three components. “[T]he dynamic behaviour of the PN can
be mapped into a time-continuous homogeneous Markov chain with state space isomorphic to the
reachability graph of the PN” [Bobbio 1990]. These Petri nets are often converted to an underly-
ing CTMC for solving. Figure 18 shows the initial marking of both components as operational.
Figure 19 shows one component failed and one operational. Figure 20 shows both components
failed.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56
[Distribution Statement A] Approved for public release and unlimited distribution

fail

Operational ‘ I Eallire

repair

Figure 18: Two Components, Both Operational

fail

Operational Failure

repair
Figure 19: One Component Operational and One Failed

fail

Operational I =1 .

repair

Figure 20: Two Components, Both Failed

There are extensions to SPNs that allow for more powerful modeling. We will summarize gener-
alized SPNs and colored Petri nets.

A generalized SPN (GSPN) is used to model events that have extremely short times to occur, and

it is useful to model them as instantaneous activities. The model is further extended to have

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57
[Distribution Statement A] Approved for public release and unlimited distribution

immediate transitions with zero firing times. All other transitions maintain their exponentially dis-
tributed firing times. Immediate timed transitions have a higher priority than any enabled time
transition. If two or more immediate transitions are enabled, the firing is random with probabili-
ties assigned to each.

Colored Petri nets (CPNs) enable powerful modeling. In a standard Petri net, tokens are indistin-
guishable and do not allow you to follow a token through the model. A colored Petri net can over-
come this by giving each token an attribute or data associated with it. The places, arcs, and
transitions can have enabling functions (i.e., Boolean expressions that must evaluate to true),
which depend on the color of the token. This refinement again reduces the number of places
needed to model complex systems and allows for more detail in the model to reflect the system
under study more accurately.

We have now briefly summarized three extensions to Petri nets: SPNs, GSPNs, and CPNs. Note
that the “resulting net with all these extensions can still be converted to a CTMC. However, there
are tradeoffs with these extensions. Whereas these extensions make the task of modeling very
simple and reduce the size of the net considerably, the complexity of understanding does in-

crease” [Malhotra 1995].
6.3.3 Sample Tool Support for Robustness Modeling

All the information in Table 5 is taken directly from the web pages describing the various tools.

Table 5: Robustness Modeling and Analysis Tools
Tool Name | Modeling Techniques Supported License
OSATE Supports the SAE Standard Aerospace Recommended Open source
Practice (ARP) 4761, Guidelines and Methods for Con- https://osate.org
ducting the Safety Assessment Process on Civil Airborne
Systems and Equipment. The processes and techniques of
the ARP4761 standard addressed by the tool are the Func-
tional Hazard Assessment, FTA, Failure Modes and Ef-
fects Analysis, and dependence diagrams, also referred to
as RBDs.
PRISM PRISM can build and analyze several types of probabilistic | Open source
models: https://www.prismmodelchecker.org
o discrete-time Markov chains (DTMCs)
e continuous-time Markov chains (CTMCs)
e Markov decision processes (MDPs)
e probabilistic automata (PAs)
e probabilistic timed automata (PTAs)
Extensions of these models are available with costs and
rewards.
BlockSim ReliaSoft BlockSim provides a comprehensive platform Commercial
for system reliability, availability, maintainability, and re- https://www.reliasoft.com/products/
lated analyses that allows you to model the most complex blocksim-system-reliability-availabil-
systems and processes using RBDs, FTA, or Markov dia- ity-maintainability-ram-analysis-soft-
grams. ware
SHARPE, SHARPE includes algorithms for analysis of fault trees, Freely available for university us-
by Duke RBDs, acyclic series-parallel graphs, acyclic and cyclic age; for company usage, there is
University Markov and semi-Markov models, GSPNs, and closed sin- contact information.
gle- and multi-chain products from queueing networks. https://sharpe.pratt.duke.edu
CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

[Distribution Statement A] Approved for public release and unlimited distribution

Tool Name | Modeling Techniques Supported License

GRIF, The BFiab module is based on RBD modeling. Commercial

by Total The Tree module serves to model a system as a fault tree. | http://grif-workshop.com

The Markov module serves to model and compute small
dynamic systems as Markov graphs. This module uses the
analytical computation engine Albizia-Markov, which pro-
cesses multi-phase systems.

The Petri module serves to model large, complex industrial
systems using SPNs with predicates and assertions.

The BStok module is used to model complex systems
based on stochastic block diagrams.

The Reseda module serves to model reliability networks.

CPN tools Colored Petri nets GNU General Public License (GPL),
Version 2
http://cpntools.org/2018/01/15/simu-
lation-replications

REALIST Within the modeling capability of REALIST using extended | Contact is listed to obtain licensing

SPNs (ESPNs), extended colored stochastic Petri nets information.
(ECSPNSs), or conjoint system models (CSMs), many as- https://www.ima.uni-
pects of a modern technical system can be captured. stuttgart.de/en/research/reliabil-
Reliability structure, system and component states ity/realist/
Constant failure rates, dynamic changing failure behavior
Failure propagation, failure dependencies, aging, several
operative states
CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

[Distribution Statement A] Approved for public release and unlimited distribution

7 Playbook for an Architecture Analysis of Robustness

This playbook outlines an approach to combine the checklists and questionnaires presented in the
previous sections with information about mechanisms to analyze an architecture to validate the
satisfaction of a robustness requirement. The playbook provides a process, illustrated with a run-
ning example, that will guide experts to perform architecture analysis in a more repeatable way.

The process has three phases and seven steps. The Preparation phase gathers the artifacts needed
to perform the analysis and evaluation. The Orientation phase uses the information in the artifacts
to understand the architecture approach to satisfying the quality attribute requirement. The process
ends with the Evaluation phase, when the analysts apply their understanding of the requirement
and architecture solution approaches to make judgments about those approaches. The phases and
steps are summarized in Table 6.

Table 6: Phases and Steps to Analyze an Architecture

Phase Step

Preparation Step 1-Collect artifacts

Step 2—Identify the mechanisms used to satisfy the requirement

Orientation Step 3-Locate the mechanisms in the architecture

Step 4-Identify derived decisions and special cases

Step 5-Assess requirement satisfaction

Evaluation Step 6-Assess impact on other quality attribute requirements

Step 7-Assess the cost/benefit of the architecture approach

The analysts might identify missing artifacts during the Preparation phase and missing or incom-
plete information within those artifacts during the Orientation Phase. At the end of each step in
the Preparation and Orientation phases, the analysts must decide whether there is sufficient infor-
mation available to proceed with the process.

This process can be applied at almost any point in the development lifecycle. The quality of the
architecture artifacts—breadth, depth, and completeness—will inform the type of analysis and
evaluation performed in Step 5 and the degree of confidence in the results. Early in the develop-
ment lifecycle, lower confidence may be acceptable, and the analyst can work with lower quality
artifacts and simpler analyses, as suggested in Table 3. Later in the lifecycle, the analyst needs
higher confidence and therefore higher quality artifacts and more and deeper analyses.

7.1 Step 1-Collect Artifacts

In this step, analysts collect the artifacts that they will need to perform the analysis. These include
quality attribute requirements and architecture documentation.

The first artifact an analyst needs is the robustness requirement to validate. The requirement must
be stated so that it is measurable, for example, as a quality attribute scenario as discussed above.
Let’s use variants of example scenarios 1 and 3 from Section 4.2, where we have specified the ar-
tifact as “Flight Management System.” Let’s call these Scenarios 5 and 6, respectively.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
[Distribution Statement A] Approved for public release and unlimited distribution

Scenario 5: Software does not report by deadline

Scenario Part

Value

Source GPS is unavailable
Stimulus GPS positioning is not reported by deadline
Artifact Flight Management System

Environment

Normal operation

Response The system detects the missed deadline, logs the error, and restarts reporting
position from dead reckoning calculation

Response Detects fault within 2 ms and switches to dead reckoning within 200 ms to calcu-

Measure late position (until GPS becomes available)

Scenario 6: System resources reaching thresholds that predict overload

Scenario Part

Value

Source Health monitor
Stimulus Processor overheats and shuts down
Artifact Flight Management System

Environment

Normal operation

Response Failover to another CPU
Response Within 50 ms
Measure

Next, the analyst needs to consider the system’s other quality attribute requirements. As noted
above, architecture designs embody tradeoffs, and decisions that improve robustness may have a
negative impact on the satisfaction of other important quality attribute requirements. In Step 6, the
analyst will check that the architecture decisions made to satisfy this requirement do not adversely
affect other quality attribute requirements, and more information about the complete set of quality
attribute requirements means greater confidence in the results of that step.

Finally, the analyst needs architecture documentation. Early in the architecture development
lifecycle, the documentation may be just a list of mechanisms mapped to quality attribute require-
ments, perhaps identifying tradeoffs. As the architecture is refined, partial models or structural di-
agrams become available, accompanied by information about key interfaces, behaviors and
interactions, and rationale that provides a deeper link between the architecture decisions and qual-
ity attribute requirements. When the architecture development iteration is finished, then the docu-
mentation should include complete models or structural diagrams, along with specification of
interfaces, behaviors and interactions, and rationale.

7.2 Step 2-ldentify the Mechanisms Used to Satisfy the Requirement

To begin the Orientation phase, there are several places to look to identify mechanisms used in the
architecture. If the architecture documentation includes a discussion of rationale, that can provide
unambiguous identification of the mechanisms used to satisfy a quality attribute requirement.
Other activities include looking at the structural and behavior diagrams or models and recognizing
architecture patterns. Naming of architecture elements may indicate the mechanism being used.
The analyst may also look at the file structure and naming of source code repositories, if they

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61
[Distribution Statement A] Approved for public release and unlimited distribution

exist, to locate mechanisms. The analyst may need to use all of these to identify the mechanism or
mechanisms that are being used to satisfy the robustness requirement. Frequently, multiple mech-
anisms are needed to satisfy a requirement [Kazman 1997]. If the analyst has access to the archi-
tect(s), this is an excellent time to use the tactics-based questionnaires, as described in Section 6.1.
In a short period of time, using these questionnaires, the analyst can enumerate all of the relevant
mechanisms chosen (and not chosen).

Considering the example requirement above, “GPS positioning is not reported by deadline,” let’s
assume that the project has not started development and that the architecture is largely conceptual
in nature. Health and performance monitoring are specified as requirements, but the final selec-
tion of technologies has been delayed by a late discovery of an enterprise-wide common capabil-
ity that the team has recently been made aware of. The architecture team has created
documentation that includes a requirement to monitor key elements and resources along with a
summary of rationale justifying other decisions relating to robustness. The rationale states that the
system will use a ping/echo mechanism to detect failures in critical elements along with hardware
and software redundancy to achieve the robustness requirements for the flight management sys-
tem. The documentation also mentions the use of the Circuit Breaker pattern to reduce the likeli-
hood of repeated or cascading failures, thus improving overall system robustness.

In a technical interchange meeting with architects, the analyst discovered that voting and analytic
redundancy are being used for comparisons of important calculations for accuracy. Voting and an-
alytic redundancy were not mentioned in their rationale for robustness, but preliminary discus-
sions about a simple ping/echo has the architects thinking that this mechanism was more
important in the satisfaction of their robustness requirements than they initially realized because it
can help detect faulty states that a simple ping/echo would miss. Another mechanism is the use of
executable assertions to help determine when and where a program is in a faulty state.

The analyst performs a quick check to decide if the referenced mechanisms are likely to contrib-
ute to satisfying the robustness requirement. In this case, all mechanisms that are enumerated
above are known to positively impact robustness measures. The architects describe six mecha-
nisms for robustness that seem to address the robustness requirements as they are currently under-
stood.

In contrast, if the documented rationale (or the architect) stated that the architecture used a record
and playback mechanism to achieve the above robustness requirements, this would raise a red flag
since record and playback is usually associated with improving testability, but not robustness.
The analyst might decide to pause the architecture analysis at this point and gather more infor-
mation from the architect. The point of this quick check is not to analyze the mechanism or deci-
sion in detail but simply to assess whether the architecture analysis is on the right track, in terms
of the available information and the mechanisms that have been chosen, before devoting more ef-
fort to a deeper analysis.

In some cases, the appropriateness of a mechanism is less clear. For example, the rationale for ro-
bustness design choices might specify that a load balancing mechanism is used. Load balancing
can support robustness to some extent, but this mechanism by itself is usually insufficient since it
only ensures that all resources are being used but ignores their health and utilization. In cases like
this, the analyst should proceed carefully: The architect may have chosen an inappropriate mecha-
nism or used a mechanism in an inappropriate way.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62
[Distribution Statement A] Approved for public release and unlimited distribution

7.3 Step 3-Locate the Mechanisms in the Architecture

Following our example, the analyst needs to use the architecture documentation, an interview with
the architect(s), or reverse-engineering to locate where these mechanisms are realized in the archi-
tecture. As seen in the tactics-based questionnaire, it is important to consider #ow a mechanism—
tactic or pattern—is implemented.

Scenario 5 is concerned with a software element—the GPS—being unresponsive in the flight
management system. The analyst may be able to look at the documentation and find a structural
diagram sketch that includes where the health monitoring and redundancy are realized in the ar-
chitecture. With this diagram in hand, finding instances of the health monitoring—for example,
using a ping/echo mechanism for detecting faults—should not be difficult because it is a major
abstraction in the system. The analyst should also be able to locate some information, perhaps a
diagram, that provides insight into which critical elements have been replicated—that is, which
elements have two or more instances, using one of the redundancy tactics, that allow the system to
failover to other hardware or software. Another useful artifact for identifying critical elements is a
fault tree analysis. Such an analysis might have been created, for example, from an AADL (Archi-
tecture Analysis & Design Language) model of the system [Delange 2014].

The analyst might next look for documentation relating to the hardware and software redundancy
and circuit breaker mechanisms that describes how cascading failures are detected and prevented.
In practice you may find this information in models, detailed designs, or higher level requirements
statements. These mechanisms could be documented using, for example, sequence diagrams
showing the path through the system when faults occur and accompanying annotations that detail
the timing of each activation. In reality, it is often the case that important mechanisms are not spe-
cifically described in the architecture documentation but are discovered during interviews. In this
case, during the technical interchange meeting the architects were describing the redundant ana-
lytics of both GPS and dead reckoning and using each as a check on the other for accuracy. The
analysts note that this voting mechanism not only improves robustness, verifying that the elements
are alive, but also can help determine whether the elements are operating according to their speci-
fications.

Finally, the analyst must be able to conceptually integrate the mechanisms. The rationale for satis-
fying the requirement (e.g., GPS fails to respond) said that a redundancy pattern was used to allow
failover to another alternative when a software element does not respond. This raises a question:
Are all elements active, or is there a set of passive elements with only one active element at a
time? This is an issue of how the system can recover from faults (and be resilient to changes in the
environment), one of the categories of questions in the Architecture Analysis Checklist. One an-
swer could be that the multiple redundant elements are active and the remaining elements only be-
come active in a degraded mode. Another is a single active element and the health monitoring
element switches to a passive element, making it the active element. However, the analyst finds
that, in reality, the architecture is a hybrid where there are certain element types with only one ac-
tive element and others where multiple elements are active.

Before finishing this step, the analysts should check that the mechanisms are being used in parts
of the architecture that relate to the requirement that they are analyzing. To assess how well a
mechanism contributes to satisfying a quality attribute requirement, it is not sufficient to stop after
the sanity check in Step 2. That establishes only the presence of the mechanisms, not their

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
[Distribution Statement A] Approved for public release and unlimited distribution

suitability or adequacy for meeting the response goal of the scenario being considered. The ana-
lysts must identify where and how the mechanism was instantiated in the architecture to assess
whether it will have the desired effect. For example, they find a ping/echo mechanism, but it is
used merely to determine that an element is alive and can respond as stated previously. This use
of the mechanism, without self-diagnostics, health checks, or other tests of accuracy, is not likely
to fully support the robustness required for the flight management system.

7.4 Step 4-ldentify Derived Decisions and Special Cases

Most architecture mechanisms are not simple, one-size-fits-all constructs. The instantiation of a
mechanism requires making a number of decisions, with some of those decisions involving choos-
ing and instantiating other mechanisms. For instance, our example employs a redundancy type of
pattern for hardware and software. One set of decisions about using that mechanism for software
is concerned with details of the spare relating to state synchronization derived from the mapping
among architectural elements category in the Architecture Analysis Checklist. This case includes
several alternatives:

o Does the system employ active redundancy (hot spare)? In active redundancy, all nodes in a
protection group receive and process identical inputs in parallel, allowing redundant spares to
maintain synchronous state with the active element(s).

o Ifthe system uses passive redundancy, how does it employ state resynchronization from ac-
tive to standby elements?

« Does the system employ spares (cold spares) that are out of service until needed? How does
the architect determine from, where, and how state will be copied or transferred to the cold
spare when it is started?

If the architect decided to support passive redundancy (the second alternative above), then there is
a set of subsequent derived decisions about how the synchronization is realized. The first is the
frequency of updates for synchronization. Would there be a snapshot of the state sent at specific
intervals, or would the passive elements receive messages of all state changes? The second de-
rived decision would be where in the architecture is the responsibility to control routing to the ac-
tive element so that all incoming inputs are processed by the newly activated element?

To assess how well a mechanism contributes to satisfying a quality attribute requirement, it is not
sufficient to stop after the quick check in Step 2. The analyst must evaluate how the mechanism
was instantiated, which usually involves tracing the decisions about the mechanism instantiation
to the derived decisions and the selected alternatives that address them. And the analyst must en-
deavor to determine whether the mechanism, as envisioned and instantiated, is likely to actually
meet the requirement.

As analysts identified the mechanisms in Step 3 above, they also started to identify derived deci-
sions. For example, in the options outlined above, the analysts identified that the synchronization
frequency will need to be tuned as the system evolves. Hence, they should pay attention to this pa-
rameter to determine the impact on the passive elements’ ability to process inputs in a timely
manner that will achieve the robustness objectives of the system.

The analyst’s next derived decision might be “Do we use simple ping/echo, or do we have a more
complex ping/echo—perhaps employing a monitoring pattern—that is in effect a small diagnostic

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
[Distribution Statement A] Approved for public release and unlimited distribution

test?” This is a detect faults decision in the Architecture Analysis Checklist. For the robustness
requirement that the analyst is validating, good answers to this question include the following:

o The system supports self-tests for correct operation.
o The system uses voting for critical elements to ensure they are not in a faulty state.

o The system has a well-defined fault tree analysis, and exception handling is defined for all
known high-impact faults.

If these statements are all true, you would have reasonably high confidence that fault detection is
adequate. (On the other hand, if the driving quality attribute requirement was, for example, to im-
prove resource utilization rather than robustness, then the architect might have chosen to forgo the
expense of self-testing, health monitoring, and voting. The removal of such mechanisms would
limit the fault detection capability to determining if an element is alive and healthy, thereby im-
pacting confidence in robustness for faulty states.)

The decision to use voting and analytic redundancy has other derived decisions. The first decision
is which elements will be considered critical enough to require voting and analytic redundancy so
that there will be a high level of confidence that features are working as intended. This decision
impacts the system’s ability to switch to a redundant positioning calculation within 200 ms. The
software may also use a predictive model to monitor the health of certain less critical elements to
ensure that the system is operating within nominal parameters, and the predictive model could
make some instances of voting and analytic redundancy unnecessary.

Another derived decision related to voting is whether the removal from service tactic should be
applied when erroneous inputs are detected (see the prevent faults category in the Tactics-Based
Questionnaire, Section 6.1). When voting indicates a problem, then a corrective action such as re-
moving the element from service can have a strong impact on robustness. This is especially true
when a system is already degraded so that scarce resources can be applied to the critical and fully
operational elements.

Finally, some mechanisms have special cases that warrant special attention. For example, the
newly identified health monitoring option uses a rule-based throttling mechanism to manage poli-
cies for degradation when resources are compromised, maintaining the most critical system func-
tions in the presence of element failures and dropping less critical functions. This can lead to
increased complexity. A rule-based throttling mechanism may be overkill in instances where the
criticality of the functions is relatively simple and straightforward. In other instances, where the
criticality can change during operation or when capabilities change, a rule-based system can make
the system easier to maintain due to its inherent flexibility.

In this example, analysts should pay attention to synchronization frequencies of the redundancy
(i.e., active, passive, spare) strategy chosen so that resources are used efficiently and so that im-
portant measures such as failover time can be met. A fully synchronized active spare is already

fully operational so messages or requests can be switched very quickly.

Another important concern is the self-tests that would enable the system to detect more faulty
states in the system than a simple ping/echo. This is another decision that will impact the time it
takes to detect faulty states that would be missed using a simple ping/echo mechanism.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65
[Distribution Statement A] Approved for public release and unlimited distribution

7.5 Step 5-Assess Requirement Satisfaction

The analyst has completed preparation and orientation and begins the Evaluation phase. The anal-
ysis performed to assess whether the architecture satisfies the quality attribute requirement will
depend on the nature of the requirement and the mechanism(s) being applied. For example, the
analyst assesses a quality attribute requirement for robustness to the loss of a processor, and the
mechanism used is a hardware redundancy pattern. The analysis should include checks for detec-
tion and failover (e.g., rerouting messages), which introduces new responsibilities. The analysis
should also include the criticality of features and the envisioned degraded modes of operation.

Recall that the requirement in Scenario 5 is that a GPS is unavailable. Our measures are “Detect
fault within 2 ms and switch to dead reckoning within 200 ms.” The architecture mechanisms
identified are the ping-echo, voting and analytic redundancy, hardware and software redundancy,
and executable assertions tactics, and the Health Monitoring and Circuit Breaker patterns. In Step
4, the analyst identified several derived decisions that need to be considered in the analysis:

o Does the system use active, passive, or spares for redundancy?

o Does the system support simple ping/echo or more sophisticated self-tests?

o What is the frequency of ping/echo?

o Which capabilities will use voting, and will outliers use the removal from service tactic?

o Is there a rule-based system for managing policies for critical capabilities and degraded
modes?

The analyst might begin by examining the realization of the Health Monitoring pattern and
ping/echo tactic—and could ask the following questions. What type of analysis has been com-
pleted on the common capability recently discovered for Health Monitoring? How will ping/echo
be implemented? The architect acknowledges there has not been time to complete analysis on the
new health monitoring alternative (it should be noted that the architect plans to look at analysis of
other systems that use the element), and a simple ping/echo response implementation at to-be-de-
termined frequencies is documented in the architect’s rationale. The analysts record the following
issues:

o Issue 1: There has not been time to complete any significant analysis on the impact of switch-
ing from the previously selected element to the Health Monitoring common capability. This
alternative was discovered during technical interchange meetings when constraints from the
enterprise architecture were brought up and the alternative was first mentioned. Since health
monitoring is a key capability for robustness, the impact of this change on the scenario re-
sponse measures is not known. This is an important omission that could have been avoided
through architectural governance practices specifically relating to knowledge management.
The stakeholders have acknowledged that often key documents are out of date and not
properly disseminated.

e Issue 2: The simple response version of ping/echo may miss important faulty states of critical
elements and will be revisited by the architecture team.

o Issue 3: The ping/echo frequency may impact resource utilization and needs to be better de-
fined.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
[Distribution Statement A] Approved for public release and unlimited distribution

This analysis thread is based on an observation that the team was given an alternative solution just
a few days before the analysis and that they had only done superficial thinking on other important
tactics (e.g., ping/echo).

Continuing our example, the analysts find that they were given conflicting answers when asking
how the system would detect and then handle elements that return erroneous inputs when making
calculations. While pulling this thread, some mentioned self-testing to detect erroneous inputs,
which was not documented in the architecture. Others focused on the example of using voting to
detect erroneous inputs, specifically multiple GPS positioning and multiple dead reckoning calcu-
lations. A related decision to support degraded modes disables dead reckoning calculations in the
event of hardware failure, as dead reckoning is considered to be a lower criticality function. This,
however, reduces the confidence in the voting mechanism since it reduces the number of voters.
The analyst records the issues:

o Issue 4: Handling of elements that provide erroneous input has not been completely designed.

o Issue 5: Voting loses inputs in degraded modes since dead reckoning calculations are not con-
sidered critical until the GPS is unavailable, and calculations are disabled when hardware
fails.

o Issue 6: No analysis was completed to determine how long it would take to restart dead reck-
oning calculation in degraded modes of operation when GPS becomes unavailable.

In this simple example, the analyst rapidly identified six issues where architecture decisions im-
pact the ability to achieve the desired response measures in Scenario 5. Some of the issues, such
as Issue 1 where a new alternative must be considered, should be carefully managed, and analysis
of the alternatives must be done before implementation. Other issues, such as Issue 3, can be man-
aged by experimentation. They plan to use similar systems built to experiment with ping/echo fre-
quency and adjust the frequencies using the similar system’s simulators to assess the impact on
resource utilization.

7.6 Step 6-Assess Impact on Other Quality Attribute Requirements

Architecture decisions rarely affect just one quality attribute requirement. The tradeoffs inherent
in design decisions mean that the mechanisms and decisions that the analyst assessed in Step 5
may be detrimental to the satisfaction of other quality attribute requirements.

Typical tradeoffs impact software performance (throughput or latency), testability, robustness,
availability, maintainability, and usability. In Step 1-Collect Artifacts, the analysts collected other
quality attribute requirements that were available at this point in the development lifecycle. Now,
they will scan those and select the ones that might be impacted by the architecture mechanisms
and decisions analyzed in Step 5—Assess Requirement Satisfaction. For example, there may be
quality attribute requirements that cover concerns such as the following:

« Latency and resource utilization will be impacted by ping/echo using system resources (CPU
and network bandwidth). Key decisions to be assessed revolved around defining the fre-
quency of the ping/echo for health monitoring and the complexity of the ping message trans-
ferred.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67
[Distribution Statement A] Approved for public release and unlimited distribution

o Ifthe voting mechanism is implemented in hardware, then it is likely to be fast and highly re-
liable (particularly if it is simple, as most voters are), but at the cost of decreased modifiabil-
ity.

e Accuracy and timeliness can be impacted when critical capabilities consume resources used
by other capabilities. Reporting GPS data and defaulting to dead reckoning when GPS is una-
vailable would be critical to supplying accurate and timely position information to pilots. The
flight management system supports degraded modes of operations where the dead reckoning
calculation is halted, to preserve limited resources for other critical features, when system re-
source thresholds are reached or failures are present. The accuracy and timeliness of position
information can become stale when the system is already in a degraded mode and then the
GPS becomes unavailable. There would be a delay since the system is required to restart dead
reckoning calculations until GPS data is once again available, resulting in longer than normal
latency for refreshing position.

o Degraded modes of operation can be complex and may need to be revised as the properties of
elements and hardware change during upgrades. An example change for degraded modes
could occur when changing from a regular GPS signal to an encrypted GPS signal requiring
additional CPU to process. Since the GPS now requires more resources, other resource alloca-
tions might need to change. Suppose GPS is more critical than altitude when the system is at
37,000 feet and the system experiences a processor failure requiring degraded modes of oper-
ation. In this case, the system could change the altitude refresh rate or the number of redun-
dant altitude calculations to make more resources available for GPS now that it requires more
resources for decrypting the GPS signal.

o Latency can be impacted by the selection of hardware, specifically restrictions on sources.
For some use cases, choices are being constrained to a trusted foundry. These processors may
take a long time to be fabricated and often have lesser processing capability than those com-
mercially available, impacting overall latency.

o The use of the Circuit Breaker pattern that was found in the rationale for our maintainability
analysis also supports robustness by isolating failures that occur in critical elements by return-
ing error codes as soon as a faulty state is detected. This is helpful in a couple of ways. First,
the system does not waste resources attempting calculations in a faulty element until it is re-
stored to health. Second, the error codes returned provide detailed information to the Health
Monitor so that the correct actions can be taken to restore the element to health. The wrapper
used to implement the Circuit Breaker has a slight impact on latency.

In this step, the analyst assesses how the mechanisms and decisions support detecting faults and
switching to other capabilities for the satisfaction of scenarios related to robustness. In addition,
Step 6 focuses on other quality attributes and concerns. For each requirement, the analysis may be
fast (e.g., ping frequency versus resource utilization) or more involved (e.g., assessing the restart
time when rolling back during significant updates). In any case, the analyst should expect to find
at least a couple of additional issues.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68
[Distribution Statement A] Approved for public release and unlimited distribution

7.7 Step 7-Assess the Costs/Benefits of the Architecture Approach

In carrying out the steps leading up to this point, the analyst should have developed a good under-
standing of the essential challenges in satisfying the quality attribute requirement, the approaches
taken by the architect (choice of mechanisms, instantiation of the mechanisms, and how derived
concerns are addressed), and the tradeoffs embodied in the approaches taken.

Any architecture approach adds new elements, interactions, or responsibilities and makes the so-
lution more complicated. Some approaches add new types of elements and interactions and in do-
ing so may make the solution substantially more complex. There is a level of complexity needed
to solve real-world problems—this is unavoidable. The final step is to judge whether the complex-
ity (and hence additional cost) introduced by this architecture approach is necessary and appropri-
ate. This is a cost/benefit analysis. In some cases, the answer will be clear: in our example, if the
elements are simple and have only a few states, then a simple ping/echo would suffice. If the ele-
ments are complex with many possible faulty states, then the complexity of self-diagnostics
would be worth the effort

Often the cost/benefit analysis is not clear, but probing the design space and the design decisions
taken with this analytical perspective in mind is still worthwhile as it will catalyze important anal-
ysis questions.

Sidebar: Assessing Brittleness

In this report, we have primarily focused on aspects of robustness that are related to reliability
and availability. However, as we discussed briefly in Section 2, an architecture can be robust
along other dimensions as well: it can be robust with respect to future modifications, accommo-
dating them in a way that requires minimal disruption to the architecture (and, ideally, minimal
effort); it can be robust with respect to spikes in demand at run-time, allowing resources to
scale up without requiring substantial human intervention; it can be robust with respect to a
change in its environment, allowing the system to, for example, be ported to a different operat-
ing system or processor with low effort and little impact to the majority of the code base. And
so forth.

In these senses, and in these contexts, an architecture can be designed to be malleable, not brit-
tle, with respect to changes in its stimuli or environment. How would we analyze for such a
quality? Given that this broader notion of robustness encompasses characteristics consistent
with maintainability, integrability, and so forth, the specific mechanisms for dealing with them
and the specific analyses to probe them are beyond the scope of this report. We can, however,
suggest three broad strategies for gaining insight into the brittleness of an architecture. They
involve the use of (1) growth and exploratory scenarios, (2) metrics, and (3) tactics-based ques-
tionnaires. We briefly discuss the use of each of these strategies.

Growth and exploratory scenarios are speculative; they speculate on possible future states of an
architecture or possible future stresses on an architecture. They also assist in making a design
decision when there are multiple options (in which case we prefer the option that is sufficient
for the anticipated system but also can support growth with little impact). We have greater con-
fidence that growth scenarios will come to pass because, by definition, these describe planned

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69
[Distribution Statement A] Approved for public release and unlimited distribution

or expected dimensions of system growth. Exploratory scenarios, as their name implies, are
much less certain. But consideration of such scenarios allows an analyst or architect to gain in-
sight into how easily they will be accommodated. If most or all growth and exploratory scenar-
i0s present significant challenges and risks, then the architecture is brittle, at least with respect
to that set of scenarios.

Architectural metrics are meant to measure characteristics of an architecture that correlate with
a desired outcome. For example, in the Maintainability report in this series we discussed the
use of the Decoupling Level metric, which measures how well an architecture is decoupled into
independent modules, as a way to gain insight into the maintainability of an architecture [Kaz-
man 2020b]. Assuming that a metric has been empirically validated and that the metric
measures something you actually care about, it can provide broad insight into an architectural
characteristic. Metrics are, by their nature, the complement of scenarios. Scenarios give you
deep but narrow insight. Metrics provide broad but shallow insight.

Finally, tactics-based questionnaires allow an analyst to gain insight into the architectural ap-
proaches taken and not taken. This insight can be gained in a short time (typically around one
hour per quality attribute analyzed) with a modest expenditure of effort. While this insight will
not result in precise analyses, it will reveal where the architectural effort has been placed with
respect to this quality attribute and any glaring omissions. This knowledge can help an analyst
assess the likelihood that an architecture is brittle with respect to the quality under considera-
tion.

Given that all three of the above techniques are limited, given that they are relatively inexpen-
sive, and given that they provide different kinds of insights, we recommend using all of them.
Together they can give insight into the likelihood of brittleness with respect to qualities of in-
terest.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70
[Distribution Statement A] Approved for public release and unlimited distribution

8 Summary

In this report, we have defined the quality attribute of robustness and focused on analyzing the
challenges of achieving robust systems, and analyzing for robustness, based on an understanding
of architectural mechanisms and their characteristics.

We have provided a set of sample scenarios for robustness and, from these and other examples,
inferred a general scenario. This general scenario can be used as an elicitation device and also
helps with analysis as it delineates the response measures that stakeholders will care about when
they consider this quality attribute. We have also described the architectural mechanisms—tactics
and patterns—for robustness. These mechanisms are useful in both design—to give a software ar-
chitect a vocabulary of design primitives from which to choose—and in analysis, so an analyst
can understand the design decisions made, or not made, their rationale, and their potential conse-
quences.

To address the needs of analysts, we have described a set of analytical tools and discussed the ar-
tifacts upon which each of these analyses depends and the stage of the software development
lifecycle in which each of these analyses could be employed.

In addition, we have provided a “playbook” for applying an architecture analysis for robustness.
This playbook combines the checklists and questionnaires with information about architectural
mechanisms to analyze an architecture to validate the satisfaction of a robustness requirement.

Finally, it must be emphasized that, in this report, we have focused on an aspect of robustness that
dealt with an architecture’s response to anticipated faults and failures. While this dimension is
clearly important to system success, it is not the only way in which an architecture can be robust.
To get insight into the other aspects of robustness that we mentioned in Section 2 of this report
requires us to think about other quality attributes and their tradeoffs. We can use exploratory sce-
narios, metrics, and tactics-based questions, as was discussed in Sections 6 and 7, to get insight
into such tradeoffs.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71
[Distribution Statement A] Approved for public release and unlimited distribution

9 Further Reading

The original tactics on which much of this report are based were first described in a paper by
Scott and Kazman [Scott 2009] and later elaborated in the book Software Architecture in Practice
[Bass 2012].

For a discussion of the aspects of architectural robustness that are related to maintainability, such
as being robust with respect to unknown changes in the future, see the Maintainability report in
this series [Kazman 2020b].

More information on Petri nets can be found in work by Malhotra and Trivedi [Malhotra 1995]. A
general introduction to Markov chains can be found in the book Markov Chains [Gagniuc 2017].
Fault modeling in AADL has been described in the work of Delange and colleagues [Delange
2014].

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72
[Distribution Statement A] Approved for public release and unlimited distribution

Bibliography

URLs are valid as of the publication date of this document.

[Avizienis 1985]
Avizienis, A. The N-Version Approach to Fault-Tolerant Software. [EEE Transactions on Sofi-
ware Engineering. Volume Se-I 1. Issue 12. December 1985. Pages 1491-1501.

[Avizienis 2001]
Avizienis, A.; Laprie, J.; & Randall, B. Fundamental Concepts of Dependability. Tech. Rep.
1145. University of Newcastle. 2001.

[Baker 2008]
Baker, J.; Schubert, M.; & Faber, M. On the Assessment of Robustness. Structural Safety. Vol-
ume 30. Issue 3. Pages 253-267. May 2008.

[Bass 2012]
Bass, L.; Clements, P; & Kazman, R. Software Architecture in Practice, 3rd ed. Addison-Wesley.
2012.

[Bellomo 2015]
Bellomo, S.; Gorton, I.; & Kazman, R. Insights from 15 Years of ATAM Data: Towards Agile
Architecture. IEEE Software. Volume 32. Number 5. 2015. Pages 38-45.

[Binder 2000]
Binder, R. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley. 2000.

[BKCASE 2018]

Body of Knowledge and Curriculum to Advance Systems Engineering. System Requirements. In
Guide to the Systems Engineering Body of Knowledge (SEBoK). 2018. https://www.se-
bokwiki.org/wiki/System_ Requirements

[Bobbio 1990]
Bobbio, A. System Modelling with Petri Nets. In System Reliability Assessment. Colombo, A. &
Saiz de Bustamante, A. (eds.). Kluwer. Pages 103—144. 1990.

[Bodson 1994]

Bodson, M.; Lehoczky, J.; Rajkumar, R.; Sha, L.; & Stephan, J. Analytic Redundancy for Soft-
ware Fault-Tolerance in Hard Real-Time Systems. In Foundations of Dependable Computing.
Koob, G. M. & Lau, C. G. (eds.). Kluwer. Pages 183-212. 1994.

[Bolch 2006]
Bolch, G.; Greiner, S.; de Meer, H.; & Trivedi, K. S. Queuing Networks and Markov Chains, 2nd
ed. Wiley. 2006.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73
[Distribution Statement A] Approved for public release and unlimited distribution

[Boyd 1998]
Boyd, M. & Lau, S. An Introduction to Markov Modeling: Concepts and Uses. NASA. 1998.
https://ntrs.nasa.gov/search.jsp?R=20020050518

[Cepin 2011]
Cepin, M. Assessment of Power System Reliability. Springer. 2011.

[Cervantes 2016]
Cervantes, H. & Kazman, R. Designing Software Architectures: A Practical Approach. Addison-
Wesley. 2016.

[Clausthal n.d.]

Technische Universitédt Clausthal Institute of Mathematics. Simulation of a Homogeneous Markov
Chain (in Discrete Time). https://www.mathematik.tu-clausthal.de/en/mathematics-interac-
tive/simulation/markov-chain-discrete/

[Clements 2010]

Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Merson, P.; Nord, R.; &
Stafford, J. Documenting Software Architectures: Views and Beyond, 2nd ed. Addison-Wesley.
2010.

[Delange 2014]

Delange, Julien; Feiler, Peter; Gluch, David; & Hudak, John. AADL Fault Modeling and Analysis
Within an ARP4761 Safety Assessment. CMU/SEI-2014-TR-020. Software Engineering Institute,
Carnegie Mellon University. 2014. http://resources.sei.cmu.edu/library/asset-view.cfm? As-
setID=311884

[DIB 2019]

Defense Innovation Board. Software Is Never Done: Refactoring the Acquisition Code for Com-
petitive Advantage. DoD. 2019. https://media.defense.gov/2019/Apr/30/2002124828/-1/-
1/0/SOFTWAREISNEVERDONE REFACTORINGTHEACQUISITIONCODEFORCOMPETI
TIVEADVANTAGE FINAL.SWAP.REPORT.PDF

[Gagniuc 2017]
Gagniuc, P. Markov Chains: From Theory to Implementation and Experimentation. Wiley. 2017.

[ISO/IEC 2011]

International Organization for Standardization and International Electrotechnical Commission.
Systems and software engineering — Systems and software Quality Requirements and Evaluation
(SQuaRE) — System and software quality models. ISO/IEC 25010:2011. ISO. 2011.

[Kazman 1994]

Kazman, R.; Abowd, G.; Bass, L.; & Webb, M. SAAM: A Method for Analyzing the Properties
of Software Architectures. In Proceedings of the 16th International Conference on Software Engi-
neering. Sorrento, Italy. ACM. 1994, Pages 81-90.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
[Distribution Statement A] Approved for public release and unlimited distribution

[Kazman 1997]

Kazman, R.; Clements, P.; Bass, L.; & Abowd, G. Classifying Architectural Elements as a Foun-
dation for Mechanism Matching. In COMPSAC 97: Proceedings of the 21st International Com-
puter Software and Applications Conference. Washington, DC. IEEE Computer Society. 1997.
Pages 14-17.

[Kazman 2020a]

Kazman, Rick; Bianco, Philip; Ivers, James; & Klein, John. Integrability. CMU/SEI-2020-TR-
001. Software Engineering Institute, Carnegie Mellon University. 2020. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=637375

[Kazman 2020b]

Kazman, Rick; Bianco, Philip; Ivers, James; & Klein, John. Maintainability. CMU/SEI-2020-TR-
006. Software Engineering Institute, Carnegie Mellon University. 2020. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=650480

[Klein 2015]

Klein, J. & Gorton, I. Design Assistant for NoSQL Technology Selection. In Proceedings of the
First International Workshop on Future of Software Architecture Design Assistants. ACM. 2015.
Pages 7-12.

[Malhotra 1995]
Malhotra, M. & Trivedi, K. S. Dependability Modeling Using Petri Nets. IEEE Transactions on
Reliability. Volume 44. Issue 3. Pages 428—440. September 1995.

[NRC 2015]
National Research Council. Reliability Growth: Enhancing Defense System Reliability. National
Academies Press, 2015. https://doi.org/10.17226/18987

[Nygard 2017]
Nygard, Michael. Release It! Design and Deploy Production-Ready Software. Pragmatic Pro-
grammers. 2017.

[ODASD 2017]
Office of the Deputy Assistant Secretary of Defense. Initiatives: Modular Open Systems Ap-
proach. 2017. https://www.dsp.dla.mil/Programs/MOSA/

[Padilla 2019]

Padilla, M.; Davis, J.; & Jacobs, W. Comprehensive Architecture Strategy (CAS). The Open
Group. September 2019. https://www.opengroup.us/face/documents.php?ac-
tion=show&dcat=87&gdid=21082

[Reliability Analytics 2010-2020]
Reliability Analytics Toolkit. Reliability Analytics. 2010-2020. https://reliabilityanalyt-
icstoolkit.appspot.com

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75
[Distribution Statement A] Approved for public release and unlimited distribution

[Scott 2009]

Scott, James & Kazman, Rick. Realizing and Refining Architectural Tactics: Availability.
CMU/SEI-2009-TR-006. Software Engineering Institute, Carnegie Mellon University. 2009.
http://resources.sei.cmu.edu/library/asset-view.cfm? AssetID=9087

[Sha 1998]
Sha, L.; Goodenough, J.; & Pollak, B. Simplex Architecture: Meeting the Challenges of Using
COTS in High-Reliability Systems. CrossTalk. Pages 7-10. April 1998.

[Shahrokni 2013]
Shahrokni, A. & Feldt, R. A Systematic Review of Software Robustness. Information and Soft-
ware Technology. Volume. 55. Number 1. Pages 1-17. January 2013.

[Sussman 2007]
Sussman, G. J. Building Robust Systems: An Essay. 2007. http://citeseerx.ist.psu.edu/view-
doc/summary?doi=10.1.1.113.1324

[SWEBOK 2014]

Bourque, P. & Fairley, R. E. (eds.). Guide to the Software Engineering Body of Knowledge, Ver-
sion 3.0. IEEE Computer Society. 2014. https://www.computer.org/education/bodies-of-
knowledge/software-engineering

[Trivedi 2016]
Trivedi, K. S. Probability and Statistics with Reliability, Queuing, and Computer Science Appli-
cations, 2nd ed. Wiley. 2016.

[Trivedi 2017]
Trivedi, K. S. & Bobbio, A. Reliability and Availability: Modeling, Analysis, Applications. Cam-
bridge University Press. 2017.

[Vesely 2002]

Vesely, W.; Dugan, J.; Fragola, J.; Minarick, J.; & Railsback, J. Fault Tree Handbook with Aero-
space Applications. NASA. 2002.
http://www.mwftr.com/CS2/Fault%20Tree%20Handbook NASA.pdf

[Wang 2001]
Wang, C.; Sklar, D.; & Johnson, D. Forward Error-Correction Coding. Crosslink. Volume 3. Issue
1. Pages 26-29. 2001.

[Yang 2007]
Yang, G. Life Cycle Reliability Engineering. Wiley. 2007.

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76
[Distribution Statement A] Approved for public release and unlimited distribution

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES

(Leave Blank) March 2022 COVERED
Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Robustness FA8702-15-D-0002

6. AUTHOR(S)
Rick Kazman, Phil Bianco, Sebastian Echeverria, and James Ivers

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2022-TR-004
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
SEI Administrative Agent AGENCY REPORT NUMBER
AFLCMC/AZS n/a
5 Eglin Street
Hanscom AFB, MA 01731-2100

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
This report summarizes how to systematically analyze a software architecture with respect to a quality attribute requirement for robust-
ness. The report introduces the quality attribute of robustness and common forms of robustness requirements for software architecture.
It provides a set of definitions, foundational concepts, and a framework for reasoning about robustness and the satisfaction of robust-
ness requirements by an architecture and by a system that realizes the architecture. It describes a set of architectural mechanisms—
patterns and tactics—that are commonly used to satisfy robustness requirements. It also provides a set of steps that an analyst can use
to determine whether an architecture documentation package provides enough information to support analysis and, if so, to determine
whether the architectural decisions made contain serious risks relative to robustness requirements. An analyst can use these steps to
determine whether those requirements, represented as a set of scenarios, have been sufficiently well specified to support the needs of
analysis. The reasoning around this quality attribute should allow an analyst, armed with appropriate architectural documentation, to
assess the robustness risks inherent in today’s architectural decisions, in light of tomorrow’s anticipated needs.

14. SUBJECT TERMS 15. NUMBER OF PAGES
architecture analysis, robustness, quality attributes, quality attribute requirements, software ar- 84
chitecture

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified uL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

CMU/SEI-2022-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

	Abstract
	1 Goals of This Document
	2 On Robustness
	3 Evaluating the Robustness of an Architecture
	3.1 Measuring Robustness
	3.2 Reasoning About Robustness Properties
	3.3 Operationalizing the Measurement of Robustness

	4 Robustness Scenarios
	4.1 General Scenario for Robustness
	4.2 Example Scenarios for Robustness
	4.2.1 Scenario 1: System Initialization Times Out
	4.2.2 Scenario 2: Software Fault and Recovery
	4.2.3 Scenario 3: Resource Threshold Is Approached
	4.2.4 Scenario 4: Hardware Failure and Restart

	Sidebar: Scenarios as Architectural Test Cases
	Sidebar: Architecting for the Unknown with Growth and Exploratory Scenarios
	5 Mechanisms for Achieving Robustness
	5.1 Tactics
	5.1.1 Detect Faults
	5.1.2 Recover from Faults
	5.1.3 Prevent Faults

	5.2 Patterns
	5.2.1 Process Pairs
	5.2.2 Triple Modular Redundancy
	5.2.3 N+1 Redundancy
	5.2.4 Circuit Breaker
	5.2.5 Recovery Blocks
	5.2.6 Forward Error Recovery
	5.2.7 Health Monitoring
	5.2.8 Throttling

	Sidebar: Designing for Unknown Unknowns
	6 Analyzing for Robustness
	6.1 Tactics-Based Questionnaire
	6.2 Architecture Analysis Checklist for Robustness
	6.3 Robustness Models and Analysis Techniques
	6.3.1 Non-state Based Modeling Techniques
	6.3.2 State-Based Modeling Techniques
	6.3.3 Sample Tool Support for Robustness Modeling

	7 Playbook for an Architecture Analysis of Robustness
	7.1 Step 1–Collect Artifacts
	7.2 Step 2–Identify the Mechanisms Used to Satisfy the Requirement
	7.3 Step 3–Locate the Mechanisms in the Architecture
	7.4 Step 4–Identify Derived Decisions and Special Cases
	7.5 Step 5–Assess Requirement Satisfaction
	7.6 Step 6–Assess Impact on Other Quality Attribute Requirements
	7.7 Step 7–Assess the Costs/Benefits of the Architecture Approach

	Sidebar: Assessing Brittleness
	8 Summary
	9 Further Reading
	Bibliography

