
Technical Report

CMU/SEI-90-TR-25
ESD-TR-90-226

Tool Version
Management Technology:

A Case Study

Peter H. Feiler
Grace F. Downey

November 1990



Tool Version
Management Technology:

A Case Study

��

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report
CMU/SEI-90-TR-25

ESD-90-TR-226
November 1990

Peter H. Feiler

Grace F. Downey
Software Development Environments Project

Unlimited distribution subject to the copyright.



This report was prepared for the SEI Joint Program Office HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF, SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1990 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is granted, provided the copyright and

\‘No Warranty\’ statements are included with all reproductions and derivative works.  Requests for permission to reproduce this document or to

prepare derivative works of this document for external and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN \‘AS-IS\’ BASIS.

CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie Mellon University for the

operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a

royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit

others to do so, for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc. / 800 Vinial Street / Pittsburgh, PA 15212. Phone:  1-800-685-6510.  FAX: (412)

321-2994. RAI also maintains a World Wide Web home page at http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on ordering, please contact

NTIS directly: National Technical Information Service / U.S. Department of Commerce / Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides acess to and transfer of scientific and

technical information for DoD personnel, DoD contractors and potential con tractors, and other U.S. Government agency personnel and their

contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 /

Ft. Belvoir, VA 22060-6218. Phone:  1-800-225-3842 or 703-767-8222.



1

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.



CMU/SEI-90-TR-25 1

Tool Version Management Technology:
A Case Study

Abstract: This report describes a portion of the problem of maintaining tools for
the purpose of software development.  It discusses an innovative solution to tool
version management available in the commercially available Network Software
Environment from Sun Microsystems, Inc.  It applies NSE mechanisms to solve
three problems that are common to the use and management of tools for software
development.

1. Introduction

This report discusses the results of the tool version management task, which is one of
several tasks being done as part of the Software Development Environments Project at the
Software Engineering Institute.  The primary focus of this task is on environment support for
the management of tool versions and automation of tool version selection.  The purpose of
this document is to describe the problem of tool version management and selection, and to
discuss an innovative solution available in a commercial software development environment.

First, we discuss a problem that any facility providing support for software development
faces: the management of software development tools.  The problem is broken down into
three issues: tool version organization and selection, the stability of selected tool versions
and the application context of selected tool versions.

Sun Microsystems’ Network Software Environment (NSE) provides mechanisms that ad-
dress not only software source and object management but also tool management.  NSE is
designed foremost to address the problem of managing configurations of source code and
derived objects.  Tools are managed as the producers of the derived objects.

Chapter 2 discusses some specific problems in the tool management domain. Chapter 3 is
provided to outline the key features of Version 1.2 of NSE which are pertinent to its tool
management capabilities. Chapter 4 details how tools must be organized to capitalize on
NSE’s capabilities and then shows three areas where the NSE mechanisms are useful:
development in heterogeneous networks, managing tool releases and organizing task-
specific tool sets.  Chapter 5 explains some direct and indirect mechanisms that NSE
provides to aid in parameterization management.  Chapter 6 describes how NSE’s tool
management solution can be used to capture tool application context.  Chapter 7 contains
our conclusions.



2 CMU/SEI-90-TR-25



CMU/SEI-90-TR-25 3

2. The Problem

It is now common for software development environments (SDEs) to consist of a number of
tools [4]. These tools operate on data that evolves over time and whose history is recorded
through a version management tool.  Different tools work on different data and at any one
time only a subset of the tools needs to be accessed. Tools do not exist as a single in-
stance. Variants may coexist to produce objects for execution on different hardware, and to
reflect adaptations and tailoring for project and task-specific needs. Multiple and incom-
patible releases may exist and may need to be available at the same time to work on new
and older versions of data.  Thus, an SDE has to deal with a proliferation of tool versions.
This raises a number of issues regarding tool version organization and selection, regarding
the stability of the selected tool configuration in light of the presence and change of other
tools and tool versions, and regarding the context in which the selected tool version is ap-
plied.

2.1. Tool Version Organization and Selection

Versions of tools can be organized according to several different criteria. This creates a
multi-dimensional version space.  Typical dimensions are machine architecture, operating
system and window system type and version, and tool release sequence. Some tools ac-
count for parameterization of certain dimensions while others do not, requiring system ad-
ministrators to develop a range of installation conventions.

The organization of tool versions has an impact on tool version selection.  Tools are invoked
by a number of agents, ranging from the user to build scripts, menu systems, notification
mechanisms, and other tools.  Thus, tool version information is distributed in a number of
places. Uniformity in tool version organization and localization of version selection reduces
complexity.

Selection of tools and tool versions is context sensitive.  Tools can be selected based on the
type of data to be operated on and the task to be performed.  Tool versions are repeatedly
selected based on their invocation context, e.g., tool variants for particular machine architec-
tures. Therefore, it is desirable for an environment framework, i.e., the platform into which
tools are integrated, to provide an automated tool version selection mechanism, resulting in
consistency of repetitive selection of tool versions.

2.2. Stability of Selected Tool Versions

Many tool versions are generated by parameterization of a tool base configuration. The
resulting tool version is a refined tool configuration consisting of a base configuration and a
collection of parameter values, which may be stored in a number of locations.  A number of
parameterization techniques are available to provide the flexibility of adapting a tool without
complete replication. They use dynamic binding of parameters at invocation and execution
time.



4 CMU/SEI-90-TR-25

Many of the parameterization mechanisms apply globally and do not support the notion of
scopes. Different tools and tool versions have to share these mechanisms. The result is that
parameterization of one tool may unintentionally change the configuration of other tools or
tool versions, i.e., the stability of any tool version potentially can be affected.

2.3. Application Context of Selected Tool Versions

Tools operate on data. Some tools create and modify source data.  These tools produce
new versions of essentially the same data.  Other tools process data as input and generate
new versions of output.  While source data is key to the resulting output, Figure 2-1 il-
lustrates three additional factors that impact the operation of tools and the tool output.

Source Context

Tool
Context

Parameter

Tool

Derived
Objects

Figure 2-1: Factors Affecting Output Data

One factor that impacts the operation and output of tools is the selection of the particular
tool. In an environment where many projects may be operating simultaneously, it is often
necessary to make several versions of a tool available to users.  A project may be at a point
in its development cycle where it can not afford the delays caused by an upgrade from a tool
vendor. Simultaneously, other projects may need additional functionality provided by the
tool upgrade.  If both versions of the tool are to be maintained, each group must ensure
selection of the appropriate version of the tool. New functionality in a tool may affect its
operation and an upgrade to the tool may affect the nature of the format or content of the
tool’s output.



CMU/SEI-90-TR-25 5

The second factor is parameters passed to the tool.  Some parameters passed to tools are
refinements of a tool configuration and effectively accomplish tool version selection.  Other
parameters are specifically passed to the tool to make a change in the derivation process.
The latter parameters are usually recorded as part of the build description of a software
product, reflecting versions of the product rather than versions of tools. This indicates that
there is a strong connection between version management of tools and version manage-
ment of software products.

The third factor that has impact on the operation of tools is the context in which the tool
executes and in which the data resides. Tools sometimes make use of facilities assumed to
be available as part of the computing environment they are installed on. On UNIX a typical
example is any tool that makes use of the pattern match program grep. Such programs are
usually not part of the release configuration that a tool vendor supplies.  Tools usually
operate on data in the context of other data.  Some of that data is part of what is being
produced. Other data is often assumed to be available in the computing environment, e.g.,
system libraries and interfaces. In order to guarantee consistent results, stability of the ap-
plication context of tools must be maintained.



6 CMU/SEI-90-TR-25



CMU/SEI-90-TR-25 7

3. Network Software Environment (NSE) Technology

The Network Software Environment, commercially available and supported by Sun
Microsystems, Inc., provides software evolution support that is useful to a single developer
as well as useful to coordinate the work of a group of developers [3]. This report is based
on our experience with Version 1.2 of NSE.  NSE has been chosen for discussion in this
report for two reasons. First, it is a system that addresses the problem of tool versions and
offers an innovative solution.  Second, advances have been made in software configuration
management (SCM) capabilities in support of software development. Sun NSE combines a
number of them to offer SCM in a non-intrusive manner to developers in UNIX environments.
Tool version management support is offered in the context of the NSE SCM capabilities.  A
factor that is most influential in determining the version of tool output is the version of input
to the tool.  In Section 3.1 configuration management is discussed because it supplies the
input to the tool.  When input may consist of a configuration of more than one file, a tool may
be considered to operate in a context as opposed to operating on a particular source file.
Section 3.2 describes the transparent source version selection mechanism that is also used
to provide tool selection.  The mechanism sets up the context in which the tool operates.
NSE provides derived object management such that more than one set of derived objects
may be associated with a given set of sources.  It is often the case that different derived
objects are the result of the application of different versions of tools.  By having a
mechanism to support objects derived by tool variants, an avenue is opened to manage the
selection of the appropriate tools.  Section 3.3 explains how the mapping to the correct
derived objects is provided.  Sections 3.4 and 3.5 describe how tools are mapped into the
context provided by NSE’s data management capabilities.  Section 3.6 describes how NSE
captures environment variables as part of the context in which a tool operates.

3.1. Source Configuration Management

The key software evolution support concept in NSE is an environment [2]. As a software
system is created and maintained, developers are constantly changing source files and
recompiling them to produce new derived objects.  An environment is a managed object
which in turn contains the objects used to construct a software system.  The environment
provides a workspace in which to control and coordinate the change occurring to the
software system.  A given environment may contain configurations of source files, derived
objects and UNIX directories. The particular version of files found in an environment
provides a context in which a developer and software development tools operate.



8 CMU/SEI-90-TR-25

As the contents of an environment evolve through development and maintenance, stages in
the development may be recorded.  The preserve command takes a "snapshot" of the con-
tents of an environment for later retrieval.  This capability of environments allows them to
contain a linear version history for a configuration of files, derived objects, and directories.
Figure 3-1 depicts a UNIX directory structure containing sets of sources and derived objects
moving through three revisions. The outermost box containing revisions R1, R2, and R3
represents an NSE environment. For storage optimization, NSE copies only objects that
have changed from one configuration version to the next.  These objects are shown in
Figure 3-1 as the small shaded boxes.  NSE’s specialized file servers make the configura-
tion appear complete and consistent to a user accessing it (see Section 3.2).

R3

A CB

R1

B CA

R2

CA B

Figure 3-1: Linear Version History of a Configuration

An environment itself is a managed object.  It can be created in one of three ways:  by the
nseenv create command; by the bootstrap command, which automatically populates it with
the artifacts of a given software system; and by the acquire command, which creates a vir-
tual copy of the existing environment specified [1]. In the third case, the new environment is
considered a child of the original environment.  It is populated with actual copies of the files
from the original environment; the copies are created when a developer makes a change to
a file.  Any changes made to the files within the child environment are visible only within that
environment. In this respect child environments may serve as private workspaces.  After a
developer has completed changes, and tested them for accuracy, the changes may be
returned to the original environment or parent via the reconcile command.



CMU/SEI-90-TR-25 9

Figure 3-2 shows the sequence of child environment creation, change, and propagation of
change back to the parent environment.  This represents a transaction style software con-
figuration management model.  The transaction model, as implemented by Sun’s NSE, sup-
ports the creation and coordination of workspaces for concurrent software change with an
automated merge procedure.

W1

Acquire

Parent Environment or Public Area

W2

Child Environment or Workspace

R1

B CA

R2

CA B

B CA CA B

Reconcile

Figure 3-2: Environments as Workspaces and Transactions



10 CMU/SEI-90-TR-25

An NSE environment can be used to maintain separate development paths for a software
system. Often during software development, it is necessary to maintain two versions of a
software system simultaneously.  A typical situation occurs when an organization supports a
released version of the software to make rapid fixes to errors reported by customers.  At the
same time functionality enhancements may occur to a separate copy in preparation for the
next major customer release.  Each of these versions of the software system can be called a
development path. NSE environments can be used to manage a software system which
splits into separate development paths.  As the software system progresses through succes-
sive changes in a given environment, it has a single development path.  At the time of sys-
tem release, a child environment can be created to provide a place to test and fix error
reports, as shown in Figure 3-3.  The successive upgrades occurring in the child environ-
ment represent the second development path.

R1 R2 R3 R4

Fix1 Fix2

 . . .

Error
Correction
Path

Enhancement Path

 . . .
Acquire Reconcile

Figure 3-3: Environments as Development Paths

3.2. Transparent Version Selection

After an environment is created and populated with a configuration of files and directories, a
user views and updates the versions of the files through activation of the environment.  The
files will appear in a directory of the file system that was specified at environment creation
time. The version of source is controlled as a configuration and provides the context in
which the tool operates.  By default, the user may view the latest configuration maintained in
the environment. However, by providing parameters to the activate command, a user may
view earlier preserved configurations. In function, environments provide the ability to view a
version of a configuration in a transparent manner.

The contents of an environment are actually stored in a repository which is built in the UNIX

file system and controlled by NSE.  NSE provides a specialized file system server which
provides access to the correct versions of files as they reside in the internal structure.  An



CMU/SEI-90-TR-25 11

activation starts the specialized file system server as a separate UNIX process. Within the
process or activated environment, the specialized file system server will make the correct
versions of the files and directory structure appear in the designated directory.  The desig-
nated directory was specified at the time the environment was created and is called the
environment’s control point.

By providing a per process mount of a configuration of directories and files, different
processes may simultaneously access different versions of the configuration of files.  Figure
3-4 shows two developers and their tools accessing two versions of the configuration simul-
taneously. The different file versions appear to each developer at the same control point in
the file system.

Developer 1

Developer 2

R1 R2

NSE environment

baz

Activate R1

Activate R2

foo

baz

foo

baz

baz

Figure 3-4: Simultaneous Access of Configuration Versions

When an environment is activated, a user can connect to the control point, and proceed to
operate on files and create new sources and derived objects as if the environment were the
normal UNIX directory structure.  It is this freedom to operate, as if no configuration manage-
ment system were present, that makes NSE non-intrusive to developers on a Sun UNIX plat-
form.



12 CMU/SEI-90-TR-25

3.3. Derived Object Management

In addition to supporting multiple versions of source objects, NSE provides the ability to
maintain several versions of derived objects.  Often a set of sources is processed by dif-
ferent tool variants to generate multiple sets of derived objects.  For example, several dif-
ferent compilers are used to generate sets of derived objects, or switches passed to a com-
piler on different builds result in different objects and executables. NSE maintains multiple
derived object sets by providing the ability to associate all the different sets with one set of
sources. An NSE environment can contain a version of a set of software sources and
several different variants of derived objects.  Figure 3-5 depicts how parameters in the
activate or acquire commands specify which set of derived objects is seen by users with the
sources. Within an activated environment, a tool such as make or the compiler will operate
on a consistent set of source and derived objects.  Derived objects produced by a different
compiler in a separate variant will not be visible.  The same mechanism that supports the
selection of derived objects from a set also makes it possible to select the object deriver or
tool.

foo.c
foo.h

foo.o
(Sun3)

Activate 
Variant  = Sun4

foo.o
(Sun4)

foo.c
foo.h
foo.o (Sun4)

( (Activate 
Variant  = Sun3( (

foo.c
foo.h
foo.o (Sun3)

Figure 3-5: Derived Object Selection



CMU/SEI-90-TR-25 13

3.4. Tool Sets

Whether an environment is used to retrieve a particular configuration of source and variant
of derived objects, as a workspace for an individual developer, or to house a particular
development path, it provides a working context for developers and the operation of tools.
The Network Software Environment execset provides the ability to designate a tool set that
is appropriate for a given environment.  Under UNIX the availability of a tool for a user is
determined by the user adding the tool’s directory to his search path.  NSE provides more
control over access by allowing automated selection of a particular version of a tool for a
given environment.  With the use of execsets, neither build utilities, such as make, nor users
have to be concerned with selection of the correct tool version.

An execset is a list of directories containing tool executables, such as a compiler or debug-
ger. An execset may also contain files which are needed for correct compilation, such as
the system libraries containing standard input or output routines.  The tools and files placed
in an execset are accessed by transparently mapping their execset directories on top of the
native file system directories where other versions may be found.  For this transparent map-
ping, NSE uses the same per process mount capability as is used for making source and
derived files of the environment transparently accessible.

It is possible to make the layering of execset directories either opaque or translucent. If the
directory specified in the execset is designated as opaque, when the execset is activated it
will block out all of the contents of the corresponding native file system directory.  Only the
executables and files installed in the execset will be available from the native file system
directory. An opaque execset directory would be good to use in the case where one direc-
tory contains all the executables that belong to only one tool.  It could be blocked out in its
entirety to be replaced by the complete set of executables of the later version of the tool.  If
the directory is translucent, then the tools found in the execset directory will be used in place
of the tools on the native file system.  However, the rest of the files present in the native file
system directory can still be accessed by the user and tools.  A translucent execset directory
would be good to use in the case of /usr/bin.  For example: if an alternative version of cc
were desired, but other tools such as /usr/bin/awk or /usr/bin/lint were still useful, then
/usr/bin should be added to an execset and designated as translucent. The alternate ver-
sion of cc would be installed in the execset /usr/bin directory. When the execset is active
and a user invokes cc, NSE’s specialized file server would cause the invocation of the alter-
nate version of cc.  The original version of cc would be obscured.  However, the rest of the
contents of /usr/bin could still be invoked as if the execset were not active.

An execset is associated with a particular environment by assigning the execset to the en-
vironment with the nseenv execset command. The execset will remain associated with the
environment until it is replaced with a subsequent nseenv execset command or a remove
execset command (nseenv rmexecset.) By removing the attachment of the execset from the
environment, tools as they exist in the native file system are available within the active en-
vironment again.  Tools are placed in the execset by moving them into the directory in-
dicated by the nseexecset prefix command. The directory that it indicates is part of the NSE



14 CMU/SEI-90-TR-25

maintained storage structure.  Once the execset has been attached and populated with
tools, any time the environment is activated, the tools of the execset are automatically avail-
able for use.  Only one execset set may be designated at a time for an environment.

A given set of tools installed in one execset’s directories can be associated with multiple
environments. For example, if a syntax-directed editor, compiler, debugger, and perfor-
mance analysis tool worked well as a package, they could be placed together in one ex-
ecset directory.  All four tools could be made available as a package to many different en-
vironments by associating the execset with each environment as needed.  It is also possible
for a popular tool to be made available for use in many environments by placing it in many
execsets. Figure 3-6 illustrates the possible mappings of environments to execsets to tools.

Environment A

Environment B

Environment C

Tool a

Tool b

Tool c

Tool d

Execset 1

Execset 2

Figure 3-6: Environments, Execsets, and Tools

3.5. Families of Tool Sets

In a heterogeneous Sun network, workstations from different families of processors with dif-
ferent instruction sets coexist. Because of the different instruction sets, different executables
are necessary. NSE takes these differences into account both for code compiled from
source code and for the executables of tools. Two of the mechanisms already described,



CMU/SEI-90-TR-25 15

variants and execsets, can be used in conjunction to manage the development of code on
and for a heterogeneous Sun network.

NSE uses variants to attach several sets of derived code to the same source.  Typically,
variants arise from derived objects that are generated for the three Sun machine architec-
tures (as indicated by the operation /bin/arch). Execsets may be characterized by the host
and target architectures they are intended for. For example, in a mixed Sun3 and Sun4 net-
work, there may be a separate execset for tools executing on Sun3s generating code for
Sun3s, tools executing on Sun3s cross-compiling to Sun4s, and the equivalent tools execut-
ing on Sun4s (as illustrated in Figure 3-7). Such groups of execsets are referred to as
execset families.

Sun 3 
Host

Sun 4 
Host

Sun 3 
Target

Sun 4
Target

6 8 k

Compiler

6 8 k

Cross
Compiler

SPARC

Cross
Compiler

SPARC

Compiler

Figure 3-7: Family of Executable Tool Sets

Execsets not only distinguish between different host and target architectures, but also be-
tween different operating system versions for both the host and the target.  Different ver-
sions of a tool may be distinguished by the operating system version with which they must
be executed.  For example, though two C compilers produce code for Sun 3 computers, the
compilers must be different depending on whether the SunOS 3.5 or SunOS 4.0.3 operating
system version is installed.  NSE automatically supports the variation of architecture and
operating system by providing default variant names composed of target-target operating
system.

NSE’s environments, variants, and execsets provide a powerful mechanism to control
software development targeted at different hardware platforms and operating systems. If



16 CMU/SEI-90-TR-25

the environment is set up properly, a user is able to activate the environment for a given
hardware target, automatically view an appropriate version of sources and derived objects at
a designated point in the file system, and receive an appropriate version of tools.

3.6. Parameterization Management

Environments serve as a meeting place where a selected version of data objects may be
operated on by a selected version of tools.  Just as NSE’s specialized file server provides an
appropriate version of data and tools with the activation of an environment, so too does the
file server store and automatically redefine the value of environment variables.  The user
may invoke the nsevar assign command to assign a designated value to a UNIX shell en-
vironment variable for the duration of the activation of the environment. When the environ-
ment is de-activated with the exit command, environment variables will assume the values
from before the activation of the environment.  Upon subsequent activations of the environ-
ment, the variable will be automatically reset to the designated value.



CMU/SEI-90-TR-25 17

4. Tool Version Organization and Selection

The previous section described the mechanism that NSE provides to select versions of
source, variants of derived objects, and versions of tools and to capture environment vari-
able values.  This section elaborates on some techniques for organizing tool installation to
allow a maximum benefit from the NSE mechanisms.  Through a combination of mechanism
and development policy, it is possible to select tools and manage derived objects for
development in a heterogeneous network.  The mechanisms may also be used to ease the
transition from one version of a tool to successive versions when the releases are incom-
patible. Finally, it is possible to organize tools into sets according to specific tasks.

4.1. Effective Tool Organization

Two aspects of the creation and use of an execset must be considered for effective tool
organization: the portions of the native file system to be masked and the placement of tools
into execsets.  The nseexecset create command uses a file that lists the directories where
tools appear in the native file system.  A directory listed in the file followed by an "O" (as in
"opaque") will contain only tools specifically added to the execset.  The contents of the ex-
ecset completely overlay what may appear under the native UNIX file system for that direc-
tory. This can be done to completely replace the contents of a directory during the activa-
tion of an environment.  It can also be used to simply block access to portions of the file
system. If a particular directory contains too many valuable tools to be completely layered
over, then when an execset is created, the directory can be listed in the file followed by a "T"
(as in "translucent").  In this case, when the execset is active, the tools found in the native
UNIX file system will still appear.  Only those tools added specifically to the execset will over-
lay the particular tool from the native file system.

It is also possible to create empty directories in the native file system, and execsets can be
used to "layer in" appropriate versions of tools.  The empty directory must be added to a
potential user’s search path.  This can be done by adding the directory to the PATH vari-
able, which is often defined during the user’s login sequence. Searching an extra directory
for executables could also be confined to the period when an environment is activated.
Since PATH is an environment variable, the nsevar assign command could be set up to
redefine PATH to include the tool directory.

A tool becomes available in an execset after the user has installed it there.  The nseexecset
create or nseexecset set command must be invoked first to specify the execset to which the
tool will be added.  The right column of Figure 3-6 depicts Tools a through d as they might
reside on the native UNIX file system.  Tools can be placed in an execset (depicted as tool
boxes in the middle column) by making a physical copy into the NSE internal data structure
that the nseexecset prefix command indicates.  Another method is to have tools in a desig-
nated tools directory that will not be overlayed by execset directories.  A symbolic link may
be established from the execset directory to the actual location and executable instance of
the tool.



18 CMU/SEI-90-TR-25

If a tool is required in more than one execset, it may be copied into each execset.  If the tool
is large, in order to save the disk space needed by copies, the tool may be accessed via a
symbolic link to one instantiation as described above. It would be wise to treat the tools in a
designated tools area as immutable in this case.  Users and environments may rely on a
particular version of a tool via a link from an attached executable set.  If the tool is changed
or replaced in the designated tools area, it is difficult to establish at the time who had links
pointing to it.  If users can rely on a tool being immutable, then there will be no need for
multiple copies to ensure that a particular build context has not changed.

4.2. Tools and Networks

With the use of workstations and network file systems, tools are operating in a different con-
text than was provided by mainframes with no processor access terminals.  Sun’s Network
File System makes it possible for more than one type of workstation architecture to reside
on the same network and share file space.  Development must also manage the creation of
several versions of a product that will execute on different workstations, and appear similar
in function across the different processors. This section describes how NSE execsets may
be used to organize tools in this situation.  The situation is more complex because of the
variety of workstations offered by vendors. The availability of Sun’s Network File System
protocols makes it possible for more than one manufacturer’s equipment to reside on the
same network.  Section 4.2.2 discusses the limitations of NSE in a network with a mixture of
hardware from different vendors.

4.2.1. Sun Networks
NSE variants can help to maintain a single source, and a set of tools organized in an
execset family may be used to produce alternative executable versions for different proces-
sors. With appropriate naming schemes, NSE environments may be set up as workspaces
which automatically give the developer access to the correct version of source, tools, and
derived objects.

When an environment is activated, the derived files for one variant are made accessible
under the control point, together with the source files.  By default, the variant is that of the
architecture of the workstation on which the user is activating the environment.  However,
the user can specify an alternative variant at activation time. This allows a user to reside on
a machine of one Sun family, i.e., the host, and build code for a second Sun family, i.e., the
target, through cross compilation. The executable code, however, can be invoked and
tested only on a machine that is a member of the target family.  This is done by activating
the environment on a machine of the target architecture.  By default, the sources and the
executables appropriate for the target will be transparently accessible on the target
machine.

When creating an environment with the bootstrap command or the nseenv create command,
NSE labels the environment with the host architecture and operating system.  NSE assumes
that the environment will produce derived objects for the given architecture and operating



CMU/SEI-90-TR-25 19

system. However, additional variants may be specified with the bootstrap and nseenv
create commands, labeling them with the name of the target architecture and target operat-
ing system on which derived objects will execute. If an environment is created on a Sun3
running operating system version 4.0.3, it may also have a Sun4-2.0.1 variant. This variant
would contain object code that would execute on a Sun4 processor with operating system
version 2.0.1.  NSE uses the target architecture and operating system version number
present in the variant name to select the appropriate execset from the execset family. When
the execset name, host and target information are given as parameters to the nseexecset
prefix command, the command returns a path to an NSE managed directory.  Tools that
perform work for the indicated host and target can be installed into the indicated directory.
Then the execset family may be attached to an environment through the nseenv execset
command. The result of the careful naming and tool installation is that two views of the
same environment will share source, but create target-specific derived objects.  When a
developer activates an environment and specifies the desired variant, NSE will automatically
provide the necessary tools to work in the environment.  Only one build script or Makefile
needs to be maintained for all variants of the system, as tools residing in different sections
of the execset family can have the same name. For example, if two versions of a C com-
piler cc exist, one to produce code for a Sun3 system and the other to produce code for a
Sun4 system, each version of cc could be installed as cc, but in different members of an
execset family.  Then the build script may invoke a compiler as cc, and under the
Sun3-4.0.3 variant of the environment, the version of cc that produces object code for the
Sun3 architecture and 4.0.3 operating system is invoked.  However, the same build script
may be used under the Sun4-2.0.1 variant of the environment, and will automatically invoke
the version of cc that produces object code for the Sun4 architecture running the 2.0.1
operating system.

Using environment variants, execset families, and properly installed tools, it is possible to
maintain only one set of sources for all versions of the product running on different plat-
forms. Upgrades and error correction can then be easily synchronized across all platforms.
A developer need only specify an environment and its variant to access correct versions of
the source, tools, and derived objects.

4.2.2. Heterogeneous Networks
Because NSE is currently available only on Sun workstations, development on machines
from other manufacturers (such as Dec VAX ULTRIX or VMS, Hewlitt-Packard, etc.) can be
supported only to various degrees.  The problem with lack of availability of NSE on non-Sun
machines is that files in an activated environment are not directly accessible, although those
machines may be connected to Suns through a network and have access to files via the
Network File System (NFS).  One reason is that the NFS server providing files for non-Sun
machines is not aware of the contents of an activated environment. Remote access to the
contents of an activated environment is not currently available.  One of the key elements to
allowing remote access is the ability to mount file systems on a per process basis [5].



20 CMU/SEI-90-TR-25

An additional limitation is that the tools necessary to cross from one manufacturer’s platform
to another are uncommon. For example, it may require in-house development to produce a
compiler that will run on a Sun3, yet generate code for a Dec VAX ULTRIX system.

4.3. Incompatible Tool Releases

Often, tools are not static objects, but tend to evolve through a series of revisions. To dis-
cuss how NSE can manage the upgrade of tools, we divide the problem into three areas
based on the magnitude of the tool change:

• tool internal

• output format

• input and output format

A tool change is designated as tool internal when it has no impact on format of input data or
output data.  The output of the new tool is compatible with the output of the former version.
An example of a tool internal change would be an ANSII C compiler upgrade for faster com-
pilation speed that did not affect the object code it produced.  If it has been the policy to
simply copy needed tools into execsets; then the new tool may be simply copied over the
old in each execset to which it belongs.  However, it is most prudent to create a new execset
by making a copy of the original execset.  The new execset can retain all the references to
other tools but be updated to reference the upgraded tool.  Then environment users can
switch to the new version of the execset but may still revert to the old if necessary.  Even
after all users have upgraded to the new tool, it will be necessary to maintain the old tool if
exact version recreation is needed.  The simplicity of this type of tool upgrade rests entirely
upon the nature of the change in the tool.

It is rare when a tool upgrade is as benign as described in the previous paragraph.  Often
there is no need for the input to the tool to change, but the output format of the tool has
changed. If an ANSII C compiler is upgraded to take advantage of a new calling sequence,
the C source need not change, but a completely new variant of derived objects is required.
In this instance, the output of the two versions of the compiler would not be compatible.  For
some applications, it may not be clear whether to take advantage of an upgrade.  NSE
variants provide a good way to create and manage both sets of derived objects. The user
can add a new variant to the environment that would reflect the output of the new tool ver-
sion. An executable set could be created retaining the standard set of tools with the
upgraded tool.  When the environment is activated with the new variant, the new set of tools
is made available.  In this environment and variant, the derived objects can be rebuilt and
tested. If the source can continue to remain the same, development on the two variants
may even continue in parallel.  Changes in source are automatically seen in activations of
the environments, regardless of which variant the source is appearing with.

A tool is completely incompatible with earlier releases if both the input and output format



CMU/SEI-90-TR-25 21

change between releases.  A different use of execsets and environments can help to
manage the upgrade to the new tool version.  The new version of the tool should be placed
in a new execset.  In order to maintain the reproducibility of a software system, the new
execset should not just be attached to all environments using the tool.  Rather, an environ-
ment that must upgrade to the new tool should spawn a child environment through the
acquire command. The child environment can then undergo a one-way conversion from the
old input format for the tool to the new input format. The execset containing the new version
of the tool can be attached to the child environment, and the system can be rebuilt.  The
parent environment will still exist with the old format, and will still invoke the old version of
the tool.  Even though a child environment may be used to house a separate branch of
development, in this case it may serve to merely continue development. The parent environ-
ment provides the ability to reproduce past versions of the system with out-of-date tools.

4.4. Task-Specific Tool Sets

It is possible to attach sets of task-specific tools through the execset mechanism to the data
stored in an NSE environment. The data placed in an NSE environment is accessed through
the activate command with parameters specifying the name of the environment and possibly
also the revision number and variant.  Since an execset may be set up to block out part of
the file system, and only the tools specifically placed in the execset are present, a developer
may be limited to a pre-designated set of tools for a given environment.  For example,
documentation specialists may be prevented from invoking a compiler, but text editors and
text processing systems are made available in the tools directory through the active environ-
ment and execset.  The use of execsets in this manner has the same effect as a menu
system that restricts the access to tools by providing only "start buttons" for a pre-
designated set of tools.

Different tool sets may be accumulated under different execset names.  This builds to the
concept of a typed environment, which limits the developer’s access to only a specific kind
of development object through the NSE environment, and limits the actions that may be
performed on those objects through the NSE execset. An NSE environment with an execset
can come to represent a specific development task by virtue of its type. The task of
documentation production may have an environment with access to only documents and
editing and formatting tools.  The task of integration may have access to only the module
interfaces and appropriate editor by virtue of the environment activated.  Documentation,
code, and interface code may all reside in the same UNIX directory structure, and it is
through the environment and execset mechanism that task restrictions become possible.

It is possible that the same tool may be used across two different tasks.  However, the na-
ture of the tool and task require task-specific tool variation.  Different NSE execsets may be
set up to contain the different variations of the tool.  A task-specific environment, can attach
the appropriate execset.  Picking up the appropriate tools will then occur as a function of
activating the correct environment for the task. As an example, if a project produces code in
both machine code and C, a given editor may be configured at installation time to provide C



22 CMU/SEI-90-TR-25

syntax checking or machine code formatting.  Two versions of the editor may be created,
one installed in the execset for C programming use, and the other installed in the execset for
machine code programming.  Environments can be created and named C-coding and
machine-coding with the appropriate execset attached.  A given developer need not remem-
ber which editor resides where in the file system, but can activate the appropriate environ-
ment and invoke the editor under the same name for either case.

Within an execset there are still many of the same concerns that are present when installing
collections of tools in the UNIX file system.  An environment is limited to having only one
execset active at a time. Within that execset, tools must be compatible.  An execset is flat;
that is, there is no support for collections of tools, each composed of several components.
Related tools may still conflict unless placed in separate execsets.



CMU/SEI-90-TR-25 23

5. Stability of Tool Configurations

The behavior and output of a tool is often affected by the value of parameters. NSE
provides some capability to prevent the fluctuation of a tool’s performance based on in-
advertently changed parameter values from one tool invocation to the next.  There are three
common methods to provide parameters to tools: profiles stored in files external to the tool,
command line option values, and environment variables.  The following paragraphs discuss
NSE’s abilities to manage each type of parameterization and to contribute to tool stability.

If a tool relies on external files existing in the native file system to contain parameter values,
then the external file may be placed in an execset along with the tool.  A common example
of an external file containing profile values are the files that a developer will set up to cus-
tomize a window management system on a workstation.  If the profile is expected to reside
in a particular directory, the directory may be specified at execset creation time for either
opaque or translucent access.  In either case, the execset can then contain a version of the
parameter file to overlay one which may exist in the native file system.  As a member of the
execset, this parameter file can remain constant across one activation of the NSE environ-
ment to the next.

If two tools rely on the same external profile file, then the operations of the two tools will
interfere with each other if they require different values present in the file.  The NSE execset
mechanism provides a means to limit profile clashes.  The execset directory can be used to
block out the occurrence of the profile file in the native file system. Then, along with the
installation of one of the tools in the execset directory, the profile with the appropriate values
may also be installed.  A second execset may be created that will contain the other tool,
along with its version of the profile file.  The values found in a profile will be used only within
an NSE environment that is active and whose execset contains the profile file.  When an
environment is de-activated and re-activated, it will automatically attach to the same tool and
profile as before.  By providing a scope to parameters contained in profiles, NSE execsets
and environments may be used to provide an easily replicated workspace which may
choose to ignore site and user specific profiles. However, NSE toolsets cannot contain two
tools with clashing profiles to be used simultaneously on the same environment.  Execsets
provide only one flat layer possible over the native file system.

The second method to provide parameter values to tools is through command line option
values. An example of a parameter value that changes tool output is the -t option for the
command ls. Use of this option will produce a listing of the files in a UNIX directory in time
order. NSE allows for the tracking of command line options by using the Sun UNIX Make
facility for tool invocation.  The Makefile serves as a build script.  The Makefile may have
versions which are managed as part of the source configuration that is maintained in an
environment. Also, through some NSE-specific enhancements to the Make facility, changes
in these command line parameters are tracked as having an influence on derived objects.
Upgrades to execsets or the entire replacement of a tool, however, will not cause a rebuild
by the Make facility, and still require the user to force a complete rebuild.



24 CMU/SEI-90-TR-25

The third method of providing parameters to tools is through environment variables. An
example of the third method is a compiler that checks if the environment variable DEBUG is
set. Based on the value of DEBUG, the compiler may insert debugger commands in the
output code and not perform some optimizations.  The nsevar assign command will assign a
designated value to a UNIX shell environment variable for the duration of activation of the
environment. This will overwrite any value of the environment variable that may be present
from before the activation of the environment.  If the environment is de-activated with the
exit command, upon subsequent activations the environment variable value will be automati-
cally set to the value designated in the nsevar assign command. The value of the environ-
ment variable may be changed by re-invoking the nsevar assign command with the shell
variable name and new value.  It also may be returned to the value set up before environ-
ment invocation by invoking the nsevar assign command with the environment variable
name, but not specifying a value for it.  When a child environment is created, it inherits any
variables given value with the nsevar assign command in the parent.  The NSE environment
variables in the child environment may be changed by first changing them in the parent and
propagating the change to the child environment with the resync command. It is possible to
change an environment variable in a child environment with the nsevar assign command in
interactive mode.  However, once an environment variable is changed in a child environ-
ment, NSE will not permit the child environment to return changes to the parent environment
via the reconcile command. Because an environment variable can serve as a parameter to
a tool, and effect the output of the tool, the restriction on the use of the nsevar assign com-
mand prevents a child environment with a different variable setting from placing incom-
patibly derived objects in the parent environment.

In terms of parameterization management, NSE provides a developer controlled scope for
the effect of different kinds of parameters by containing their impact to an activated NSE
environment. It also allows for the tracking of parameter values in the Makefile as a build
script by managing the Makefile in the same manner as a product source file.  Finally,
parameter values stored in environment variables are easily reproduced from one invocation
of a tool to the next by allowing them to be registered and maintained within the context of
the NSE environment, which also contains the configuration of source on which the tool is to
operate.



CMU/SEI-90-TR-25 25

6. Managing the Tool Application Context

When tools make use of facilities that are assumed to be available as part of the computing
environment, then these facilities also should be added to configuration control to assure the
proper operation of a tool.  When such facilities consist of executables such as grep or diff,
then NSE execset may be used to capture a version of these executables along with the
executable of the tool that invokes them.

Other common system facilities that tools rely upon are UNIX system include files and sys-
tem library files.  Such files may not only differ from architecture to architecture, but also
from one operating system version to the next.  NSE execsets can be used to provide the
correct versions of these files because they are not restricted to containing only tool ex-
ecutables. They can also be used to provide transparent access to auxiliary files necessary
for system build but not managed as source files in environments.  For example, if an NSE
environment is setup on a Sun3 to produce code for both the Sun3 and Sun4 Computers,
then the execset family attached to the environment can block out the directory containing
system-specific include files such as floatingpoint.h. Two variants of the environment should
be set up, one containing code compiled on the Sun3 for the Sun3, the second containing
code compiled on the Sun3 but for the Sun4.  The file floatingpoint.h from the Sun3 can then
be installed on the Sun3 execset family member, while floatingpoint.h can be copied from
the Sun4 and installed in the execset member that contains the tool for cross-development
from Sun3 to Sun4.  This will ensure the appropriate application of system provided files in
the appropriate variant.

NSE execsets may contain any file which is relevant to the development context. This in-
cludes not only tool executables but also system-supplied utilities, libraries and interfaces.
Providing a way to manage all these factors that affect the output of a tool can improve the
stability of the application context occurring during development.



26 CMU/SEI-90-TR-25



CMU/SEI-90-TR-25 27

7. Conclusions

The major issues in tool version management to support software development are tool ver-
sion selection, stability of tool parameterization and reproducibility of derivation context.
Sun’s Network Software Environment has a solution that supports tool version management
in a transparent manner.  Although NSE is proprietary to Sun, the mechanisms can be ap-
plied as well on any UNIX-based system.

Two important mechanisms to NSE’s implementation are the per process mount of the file
system and the translucent file server.  These provide the transparent access and the map-
ping of different file and tool versions on a per process basis. The same mechanisms are
used to provide source and derived object versions and tool versions.

NSE provides a context for the application of tools through the environment mechanism.  It
automates the selection of a tool family, and the selection of the correct object deriver from
within the tool family.  Environment variables are reset in the context in which the tool will
operate.

The mechanisms provided by NSE can be used to solve some concrete problems in tool
management: the selection of tools for development for multiple systems, the installation of
incompatible tool upgrades and for organizing access to tools.  However, its solution does
not extend to mechanisms to manage the insertion of new tool releases that result in new
versions of tool sets.  Also, if tools are to be supplied to an environment, they must be
present in one flat structure.  There is no ability to combine or compose tool sets for use
within one application context.  Within the one flat structure, there is still all the potential for
tools to clash in name or in parameter settings.  Finally, NSE does not contribute any
mechanism to enforcing the immutability of tools.  Policy and conventions must be
developed to govern the replacement of tools in toolsets or the creation of new toolsets.

Overall, NSE provides a good approach to serve a developer the correct versions of source
and tools.  It also provides mechanisms to capture some of the many kinds of tool
parameters and development context.



28 CMU/SEI-90-TR-25



CMU/SEI-90-TR-25 29

References

[1] Network Software Environment: Installation and Administration
Sun Microsystems, Inc., 1988.

[2] Network Software Environment: Reference Manual
Sun Microsystems, Inc., 1988.

[3] Courington, William.
The Network Software Environment.
Technical Report, Sun Microsystems, Inc., 1989.

[4] Susan A. Dart, Robert Ellison, Peter H. Feiler, and A. N. Habermann.
Software Development Environments.
IEEE Computer , November, 1987.

[5] David Hendricks.
The Translucent File Service.
In New Directions for UNIX. Proceedings of the Autumn 1988 EUUG. European UNIX

System User Group, 1988.
Dates: 3-7 Oct. 1988, Location: Cascais, Portugal.



30 CMU/SEI-90-TR-25



CMU/SEI-90-TR-25 i

Table of Contents

1. Introduction 1

2. The Problem 3
2.1. Tool Version Organization and Selection 3
2.2. Stability of Selected Tool Versions 3
2.3. Application Context of Selected Tool Versions 4

3. Network Software Environment (NSE) Technology 7
3.1. Source Configuration Management 7
3.2. Transparent Version Selection 10
3.3. Derived Object Management 12
3.4. Tool Sets 13
3.5. Families of Tool Sets 14
3.6. Parameterization Management 16

4. Tool Version Organization and Selection 17
4.1. Effective Tool Organization 17
4.2. Tools and Networks 18

4.2.1. Sun Networks 18
4.2.2. Heterogeneous Networks 19

4.3. Incompatible Tool Releases 20
4.4. Task-Specific Tool Sets 21

5. Stability of Tool Configurations 23

6. Managing the Tool Application Context 25

7. Conclusions 27

References 29



ii CMU/SEI-90-TR-25



CMU/SEI-90-TR-25 iii

List of Figures

Figure 2-1: Factors Affecting Output Data 4
Figure 3-1: Linear Version History of a Configuration 8
Figure 3-2: Environments as Workspaces and Transactions 9
Figure 3-3: Environments as Development Paths 10
Figure 3-4: Simultaneous Access of Configuration Versions 11
Figure 3-5: Derived Object Selection 12
Figure 3-6: Environments, Execsets, and Tools 14
Figure 3-7: Family of Executable Tool Sets 15


